人工智能
文章平均质量分 86
Hanley_Yeung
这个作者很懒,什么都没留下…
展开
-
视频也能分割?!在云服务器上部署最新视觉大模型SAM2教程、详细代码注释和视频演示
SAM2在云平台上详细部署代码、中文注释和演示原创 2024-08-06 11:53:52 · 1144 阅读 · 0 评论 -
ViT & Transformer & Dert
Vit结构Vit - 图像分块嵌入 (Patch embedding)原创 2024-07-28 14:51:21 · 252 阅读 · 0 评论 -
目标检测(降低误检测率及小目标检测系列笔记)[通俗易懂]
目标检测(降低误检测率及小目标检测系列笔记)[通俗易懂]原创 2024-07-23 10:43:35 · 1375 阅读 · 0 评论 -
动手学深度学习(2.2)数据预处理
为两列“Alley_Pave”和“Alley_nan”。巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。其中每行描述了房间数量(“NumRooms”)、巷子类型(“Alley”)和房屋价格(“Price”)。由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”,中的所有条目都是数值类型,它们可以转换为张量格式。中的类别值或离散值,我们。原创 2024-07-22 15:02:31 · 656 阅读 · 0 评论 -
目标检测入门
但是,如果预测到的x,y坐标大于1,比如(1.2, 0.7)。这打破了YOLO背后的理论,因为如果我们假设红色框负责预测目标狗,那么狗的中心必须在红色单元中,不应该在它旁边的网格单元中。因此,为了解决这个问题,我们对输出执行sigmoid函数,将输出压缩到区间0到1之间,有效确保中心处于执行预测的网格单元中。网络的输出是S x Sx (5*B+C)的一个tensor(S-尺寸,B-标定框个数,C- 检测类别数,5-标定框的信息)。一般情况下,YOLO不会预测边界框中心的确切坐标。Yolo的缺点: .原创 2024-07-21 16:12:42 · 1063 阅读 · 0 评论 -
动手学深度学习(2.1)数据操作
为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。 通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。 如果没有某种方法来存储数据,那么获取数据是没有意义的。原创 2024-07-19 10:10:37 · 926 阅读 · 0 评论 -
InceptionV3代码实现(Pytorch)
Inception网络是CNN发展史上一个重要的里程碑。在Inception出现之前,大部分流行CNN仅仅是把卷积层堆叠得越来越多,使网络越来越深,以此希望能够得到更好的性能。原创 2024-07-18 11:17:18 · 1359 阅读 · 0 评论 -
动手学深度学习(1.3.1 - 1.3.2)监督学习 & 无监督学习
监督学习 & 无监督学习原创 2024-07-15 17:30:49 · 637 阅读 · 0 评论 -
图像的线性滤波/卷积
图像的线性滤波/卷积理论&实践原创 2024-04-03 16:27:54 · 1529 阅读 · 1 评论