动手学深度学习(1.3.1 - 1.3.2)监督学习 & 无监督学习

1.3. 各种机器学习问题

在机器学习的广泛应用中,唤醒词问题只是冰山一角。 前面唤醒词识别的例子,只是机器学习可以解决的众多问题中的一个。 下面将列出一些常见的机器学习问题和应用,为之后本书的讨论做铺垫。 接下来会经常引用前面提到的概念,如数据、模型和优化算法。

1.3.1. 监督学习

监督学习(supervised learning)擅长在“给定输入特征”的情况下预测标签。 每个“特征-标签”对都称为一个样本(example)。 有时,即使标签是未知的,样本也可以指代输入特征。 我们的目标是生成一个模型,能够将任何输入特征映射到标签(即预测)。

举一个具体的例子: 假设我们需要预测患者的心脏病是否会发作,那么观察结果“心脏病发作”或“心脏病没有发作”将是样本的标签。 输入特征可能是生命体征,如心率、舒张压和收缩压等。

监督学习之所以能发挥作用,是因为在训练参数时,我们为模型提供了一个数据集,其中每个样本都有真实的标签。 用概率论术语来说,我们希望预测“估计给定输入特征的标签的条件概率。 虽然监督学习只是几大类机器学习问题之一,但是在工业中,大部分机器学习的成功应用都使用了监督学习。 这是因为在一定程度上,许多重要的任务可以清晰地描述为,在给定一组特定的可用数据的情况下,估计未知事物的概率。比如:

  • 根据计算机断层扫描(Computed Tomography,CT)肿瘤图像,预测是否为癌症;

  • 给出一个英语句子,预测正确的法语翻译;

  • 根据本月的财务报告数据,预测下个月股票的价格;

监督学习的学习过程一般可以分为三大步骤:

  1. 从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签。有时,这些样本已有标签(例如,患者是否在下一年内康复?);有时,这些样本可能需要被人工标记(例如,图像分类)。这些输入和相应的标签一起构成了训练数据集

  2. 选择有监督的学习算法,它将训练数据集作为输入,并输出一个“已完成学习的模型”;

  3. 之前没有见过的样本特征放到这个“已完成学习的模型”中,使用模型的输出作为相应标签的预测

整个监督学习过程如 图1.3.1 所示。

综上所述,即使使用简单的描述给定输入特征的预测标签,监督学习也可以采取多种形式的模型,并且需要大量不同的建模决策,这取决于输入和输出的类型、大小和数量。 例如,我们使用不同的模型来处理“任意长度的序列”或“固定长度的序列”。

1.3.1.1. 回归

回归regression)是最简单的监督学习任务之一。 假设有一组房屋销售数据表格,其中每行对应一个房子,每列对应一个相关的属性,例如房屋的面积、卧室的数量、浴室的数量以及到镇中心的步行距离,等等。 每一行的属性构成了一个房子样本的特征向量。 如果一个人住在纽约或旧金山,而且他不是亚马逊、谷歌、微软或Facebook的首席执行官,那么他家的特征向量(房屋面积,卧室数量,浴室数量,步行距离)可能类似于:[600,1,1,60]。 如果一个人住在匹兹堡,这个特征向量可能更接近[3000,4,3,10]…… 当人们在市场上寻找新房子时,可能需要估计一栋房子的公平市场价值。 为什么这个任务可以归类为回归问题呢?本质上是输出决定的。 销售价格(即标签)是一个数值。 当标签取任意数值时,我们称之为回归问题,此时的目标是生成一个模型,使它的预测非常接近实际标签值

生活中的许多问题都可归类为回归问题。 比如,预测用户对一部电影的评分可以被归类为一个回归问题。 这里有一个小插曲:在2009年,如果有人设计了一个很棒的算法来预测电影评分,那可能会赢得100万美元的奈飞奖。 再比如,预测病人在医院的住院时间也是一个回归问题。 总而言之,判断回归问题的一个很好的经验法则是,任何有关有多少的问题很可能就是回归问题。比如:

  • 这个手术需要多少小时;

  • 在未来6小时,这个镇会有多少降雨量。

即使你以前从未使用过机器学习,可能在不经意间,已经解决了一些回归问题。 例如,你让人修理了排水管,承包商花了3小时清除污水管道中的污物,然后他寄给你一张350美元的账单。 而你的朋友雇了同一个承包商2小时,他收到了250美元的账单。 如果有人请你估算清理污物的费用,你可以假设承包商收取一些基本费用,然后按小时收费。 如果这些假设成立,那么给出这两个数据样本,你就已经可以确定承包商的定价结构:50美元上门服务费,另外每小时100美元。 在不经意间,你就已经理解并应用了线性回归算法

然而,以上假设有时并不可取。 例如,一些差异是由于两个特征之外的几个因素造成的。 在这些情况下,我们将尝试学习最小化预测值和实际标签值的差异的模型。 本书大部分章节将关注平方误差损失函数的最小化

1.3.1.2. 分类

虽然回归模型可以很好地解决“有多少”的问题,但是很多问题并非如此。 例如,一家银行希望在其移动应用程序中添加支票扫描功能。 具体地说,这款应用程序能够自动理解从图像中看到的文本并将手写字符映射到对应的已知字符之上。 这种“哪一个”的问题叫做分类classification)问题。 分类问题希望模型能够预测样本属于哪个类别(category,正式称为(class))。 例如,手写数字可能有10类,标签被设置为数字0~9。 最简单的分类问题是只有两类,这被称之为二项分类binomial classification)。 例如,数据集可能由动物图像组成,标签可能是猫狗{猫,狗}两类。 回归是训练一个回归函数来输出一个数值; 分类是训练一个分类器来输出预测的类别。

然而模型怎么判断得出这种“是”或“不是”的硬分类预测呢? 我们可以试着用概率语言来理解模型。 给定一个样本特征,模型为每个可能的类分配一个概率。 比如,之前的猫狗分类例子中,分类器可能会输出图像是猫的概率为0.9。 0.9这个数字表达什么意思呢? 可以这样理解:分类器90%确定图像描绘的是一只猫。 预测类别的概率的大小传达了一种模型的不确定性,本书后面章节将讨论其他运用不确定性概念的算法。

当有两个以上的类别时,我们把这个问题称为多项分类multiclass classification)问题。 常见的例子包括手写字符识别 {0,1,2,...9,a,b,c,...}。 与解决回归问题不同,分类问题的常见损失函数被称为交叉熵(cross-entropy),本书 3.4节 将详细阐述。

请注意,最常见的类别不一定是最终用于决策的类别。 举个例子,假设后院有一个如 图1.3.2 所示的蘑菇。

现在,我们想要训练一个毒蘑菇检测分类器,根据照片预测蘑菇是否有毒。 假设这个分类器输出 图1.3.2 包含死帽蕈的概率是0.2。 换句话说,分类器80%确定图中的蘑菇不是死帽蕈。 尽管如此,我们也不会吃它,因为不值得冒20%的死亡风险。 换句话说,不确定风险的影响远远大于收益。 因此,我们需要将“预期风险”作为损失函数,即需要将结果的概率乘以与之相关的收益(或伤害)。 在这种情况下,食用蘑菇造成的损失为0.2×∞+0.8×0=∞,而丢弃蘑菇的损失为0.2×0+0.8×1=0.8。 事实上,谨慎是有道理的, 图1.3.2中的蘑菇实际上是一个死帽蕈。

分类可能变得比二项分类、多项分类复杂得多。 例如,有一些分类任务的变体可以用于寻找层次结构,层次结构假定在许多类之间存在某种关系。 因此,并不是所有的错误都是均等的。 人们宁愿错误地分入一个相关的类别,也不愿错误地分入一个遥远的类别,这通常被称为层次分类(hierarchical classification)。 早期的一个例子是卡尔·林奈,他对动物进行了层次分类。

在动物分类的应用中,把一只狮子狗误认为雪纳瑞可能不会太糟糕。 但如果模型将狮子狗与恐龙混淆,就滑稽至极了。 层次结构相关性可能取决于模型的使用者计划如何使用模型问题背景)。 例如,响尾蛇和乌梢蛇血缘上可能很接近,但如果把响尾蛇误认为是乌梢蛇可能会是致命的。 因为响尾蛇是有毒的,而乌梢蛇是无毒的。

1.3.1.3. 标记问题

有些分类问题很适合于二项分类或多项分类。 例如,我们可以训练一个普通的二项分类器来区分猫和狗。 运用最前沿的计算机视觉的算法,这个模型可以很轻松地被训练。 尽管如此,无论模型有多精确,当分类器遇到新的动物时可能会束手无策。 比如 图1.3.3所示的这张“不来梅的城市音乐家”的图像 (这是一个流行的德国童话故事),图中有一只猫、一只公鸡、一只狗、一头驴,背景是一些树。 取决于我们最终想用模型做什么,将其视为二项分类问题可能没有多大意义。 取而代之,我们可能想让模型描绘输入图像的内容,一只猫、一只公鸡、一只狗,还有一头驴。

学习预测不相互排斥的类别的问题称为多标签分类multi-label classification)。 举个例子,人们在技术博客上贴的标签,比如“机器学习”“技术”“小工具”“编程语言”“Linux”“云计算”“AWS”。 一篇典型的文章可能会用5~10个标签,因为这些概念是相互关联的。 关于“云计算”的帖子可能会提到“AWS”,而关于“机器学习”的帖子也可能涉及“编程语言”。

此外,在处理生物医学文献时,我们也会遇到这类问题。 正确地标记文献很重要,有利于研究人员对文献进行详尽的审查。 在美国国家医学图书馆(The United States National Library of Medicine),一些专业的注释员会检查每一篇在PubMed中被索引的文章,以便将其与Mesh中的相关术语相关联(Mesh是一个大约有28000个标签的集合)。 这是一个十分耗时的过程,注释器通常在归档和标记之间有一年的延迟。 这里,机器学习算法可以提供临时标签,直到每一篇文章都有严格的人工审核。 事实上,近几年来,BioASQ组织已经举办比赛来完成这项工作。

1.3.1.4. 搜索

有时,我们不仅仅希望输出一个类别或一个实值。 在信息检索领域,我们希望对一组项目进行排序。 以网络搜索为例,目标不是简单的“查询(query)-网页(page)”分类,而是在海量搜索结果中找到用户最需要的那部分。 搜索结果的排序也十分重要,学习算法需要输出有序的元素子集。 换句话说,如果要求我们输出字母表中的前5个字母,返回“A、B、C、D、E”和“C、A、B、E、D”是不同的。 即使结果集是相同的,集内的顺序有时却很重要

该问题的一种可能的解决方案:首先为集合中的每个元素分配相应的相关性分数,然后检索评级最高的元素PageRank,谷歌搜索引擎背后最初的秘密武器就是这种评分系统的早期例子,但它的奇特之处在于它不依赖于实际的查询。 在这里,他们依靠一个简单的相关性过滤来识别一组相关条目,然后根据PageRank对包含查询条件的结果进行排序。 如今,搜索引擎使用机器学习用户行为模型获取网页相关性得分,很多学术会议也致力于这一主题。

1.3.1.5. 推荐系统

另一类与搜索和排名相关的问题是推荐系统recommender system),它的目标是向特定用户进行“个性化”推荐。 例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。 类似的应用也会出现在零售产品、音乐和新闻推荐等等。

在某些应用中,客户会提供明确反馈,表达他们对特定产品的喜爱程度。 例如,亚马逊上的产品评级和评论。 在其他一些情况下,客户会提供隐性反馈。 例如,某用户跳过播放列表中的某些歌曲,这可能说明这些歌曲对此用户不大合适。 总的来说,推荐系统会为“给定用户和物品”的匹配性打分,这个“分数”可能是估计的评级或购买的概率。 由此,对于任何给定的用户,推荐系统都可以检索得分最高的对象集,然后将其推荐给用户。以上只是简单的算法,而工业生产的推荐系统要先进得多,它会将详细的用户活动和项目特征考虑在内。 推荐系统算法经过调整,可以捕捉一个人的偏好。 比如, 图1.3.4 是亚马逊基于个性化算法推荐的深度学习书籍,成功地捕捉了作者的喜好。

尽管推荐系统具有巨大的应用价值,但单纯用它作为预测模型仍存在一些缺陷。 首先,我们的数据只包含“审查后的反馈”:用户更倾向于给他们感觉强烈的事物打分。 例如,在五分制电影评分中,会有许多五星级和一星级评分,但三星级却明显很少。 此外,推荐系统有可能形成反馈循环:推荐系统首先会优先推送一个购买量较大(可能被认为更好)的商品,然而目前用户的购买习惯往往是遵循推荐算法,但学习算法并不总是考虑到这一细节,进而更频繁地被推荐。 综上所述,关于如何处理审查、激励和反馈循环的许多问题,都是重要的开放性研究问题。

1.3.1.6. 序列学习

以上大多数问题都具有固定大小的输入和产生固定大小的输出。 例如,在预测房价的问题中,我们考虑从一组固定的特征:房屋面积、卧室数量、浴室数量、步行到市中心的时间; 图像分类问题中,输入为固定尺寸的图像,输出则为固定数量(有关每一个类别)的预测概率; 在这些情况下,模型只会将输入作为生成输出的“原料”,而不会“记住”输入的具体内容

如果输入的样本之间没有任何关系,以上模型可能完美无缺。 但是如果输入是连续的,模型可能就需要拥有“记忆”功能。 比如,我们该如何处理视频片段呢? 在这种情况下,每个视频片段可能由不同数量的帧组成。 通过前一帧的图像,我们可能对后一帧中发生的事情更有把握。 语言也是如此,机器翻译的输入和输出都为文字序列

再比如,在医学上序列输入和输出就更为重要。 设想一下,假设一个模型被用来监控重症监护病人,如果他们在未来24小时内死亡的风险超过某个阈值,这个模型就会发出警报。 我们绝不希望抛弃过去每小时有关病人病史的所有信息,而仅根据最近的测量结果做出预测。

这些问题是序列学习的实例,是机器学习最令人兴奋的应用之一。 序列学习需要摄取输入序列或预测输出序列,或两者兼而有之。 具体来说,输入和输出都是可变长度的序列,例如机器翻译和从语音中转录文本。 虽然不可能考虑所有类型的序列转换,但以下特殊情况值得一提。

标记和解析。这涉及到用属性注释文本序列。 换句话说,输入和输出的数量基本上是相同的。 例如,我们可能想知道动词和主语在哪里,或者可能想知道哪些单词是命名实体。 通常,目标是基于结构和语法假设对文本进行分解和注释,以获得一些注释。 这听起来比实际情况要复杂得多。 下面是一个非常简单的示例,它使用“标记”来注释一个句子,该标记指示哪些单词引用命名实体。 标记为“Ent”,是实体(entity)的简写。

Tom has dinner in Washington with Sally
Ent  -    -    -     Ent      -    Ent

自动语音识别。在语音识别中,输入序列是说话人的录音(如 图1.3.5 所示),输出序列是说话人所说内容的文本记录。 它的挑战在于,与文本相比,音频帧多得多(声音通常以8kHz或16kHz采样)。 也就是说,音频和文本之间没有1:1的对应关系,因为数千个样本可能对应于一个单独的单词。 这也是“序列到序列”的学习问题,其中输出比输入短得多

文本到语音。这与自动语音识别相反。 换句话说,输入是文本,输出是音频文件。 在这种情况下,输出比输入长得多。 虽然人类很容易识判断发音别扭的音频文件,但这对计算机来说并不是那么简单。

机器翻译。 在语音识别中,输入和输出的出现顺序基本相同。 而在机器翻译中,颠倒输入和输出的顺序非常重要。 换句话说,虽然我们仍将一个序列转换成另一个序列,但是输入和输出的数量以及相应序列的顺序大都不会相同。 比如下面这个例子,“错误的对齐”反应了德国人喜欢把动词放在句尾的特殊倾向。

德语:           Haben Sie sich schon dieses grossartige Lehrwerk angeschaut?
英语:          Did you already check out this excellent tutorial?
错误的对齐:  Did you yourself already this excellent tutorial looked-at?

其他学习任务也有序列学习的应用。 例如,确定“用户阅读网页的顺序”是二维布局分析问题。 再比如,对话问题对序列的学习更为复杂:确定下一轮对话,需要考虑对话历史状态以及现实世界的知识…… 如上这些都是热门的序列学习研究领域。

1.3.2. 无监督学习

到目前为止,所有的例子都与监督学习有关,即需要向模型提供巨大数据集:每个样本包含特征和相应标签值。 打趣一下,“监督学习”模型像一个打工仔,有一份极其专业的工作和一位极其平庸的老板。 老板站在身后,准确地告诉模型在每种情况下应该做什么,直到模型学会从情况到行动的映射。 取悦这位老板很容易,只需尽快识别出模式并模仿他们的行为即可。

相反,如果工作没有十分具体的目标,就需要“自发”地去学习了。 比如,老板可能会给我们一大堆数据,然后要求用它做一些数据科学研究,却没有对结果有要求。 这类数据中不含有目标的机器学习问题通常被为无监督学习unsupervised learning), 本书后面的章节将讨论无监督学习技术。 那么无监督学习可以回答什么样的问题呢?来看看下面的例子。

  • 聚类clustering)问题:没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗?同样,给定一组用户的网页浏览记录,我们能否将具有相似行为的用户聚类呢?

  • 主成分分析principal component analysis)问题:我们能否找到少量的参数来准确地捕捉数据的线性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发出了一小部分参数,这些参数相当准确地描述了人体的形状,以适应衣服的需要。另一个例子:在欧几里得空间中是否存在一种(任意结构的)对象的表示,使其符号属性能够很好地匹配?这可以用来描述实体及其关系,例如“罗马” − “意大利” + “法国” = “巴黎”。

  • 因果关系causality)和概率图模型probabilistic graphical models)问题:我们能否描述观察到的许多数据的根本原因?例如,如果我们有关于房价、污染、犯罪、地理位置、教育和工资的人口统计数据,我们能否简单地根据经验数据发现它们之间的关系

  • 生成对抗性网络generative adversarial networks):为我们提供一种合成数据的方法,甚至像图像和音频这样复杂的非结构化数据。潜在的统计机制是检查真实和虚假数据是否相同的测试,它是无监督学习的另一个重要而令人兴奋的领域。

  • 8
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hanley_Yeung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值