Python实现简单的层次聚类算法以及可视化

基本的算法思路就是:把当前组间距离最小的两组合并成一组。

算法的差异在算法如何确定组件的距离,一般有最大距离,最小距离,平均距离,马氏距离等等。

代码如下:

import numpy as np
import data_helper
np.random.seed(1)
def get_raw_data(n):
    _data=np.random.rand(n,2)
    #生成数据的格式是n个(x,y)
    _groups={idx:[[x,y]] for idx,(x,y) in enumerate(_data)}
    return _groups
def cal_distance(cluster1,cluster2):
    #采用最小距离作为聚类标准
    _min_distance=10000
    for x1,y1 in cluster1:
        for x2,y2 in cluster2:
            _distance=(x1-x2)**2+(y1-y2)**2
            if _distance<_min_distance:
                _min_distance=_distance
    return _distance
groups=get_raw_data(10)
count=0
while len(groups)!=1:#判断是不是所有的数据是不是归为了同一类
    min_distance=10000
    len_groups=len(groups)

    for i in groups.keys():
        for  j in groups.keys():
            if i>=j:
                continue
            distance=cal_distance(groups[i],groups[j])
            if distance<min_distance:
                min_distance=distance
                min_i=i
                min_j=j#这里的j>i
    groups[min_i].extend(groups.pop(min_j))
    data_helper.draw_data(groups)
    #一共n个簇,共迭代n-1次

运行的效果就是迭代一次,组数就会少一次,调用画图方法,同一组的数据被显示为一个颜色。

相关推荐

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页

打赏作者

York1996

您的打赏,是我更新的动力!

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值