计算方法——C语言实现——迭代法求解线性方程组

最近在上计算方法这门课,要求是用MATLAB做练习题,但是我觉得C语言也很棒棒啊~

题目:

在这里插入图片描述
和直接法不同,迭代法是一种逐次逼近的方法,将复杂问题简单化,求比较大的方程组时一般都不会用直接法。迭代法有好几种,这里使用了Jacobi迭代与Gausse_Seidel迭代法。
使用VS2017,代码如下:

//使用Jacobi迭代法与Gausse_Seidel迭代法计算线性方程组
#include "stdafx.h"
#include<stdlib.h>
#include "math.h"

//根据用户输入的行列数,生成二维矩阵A L U D 向量 b x y ,并全部初始化为0
double **A, *b, *x, *y, **L, **U,**D;
double calculate_e = 0.0001;//默认精度为10^-4
unsigned int RANK = 4;
unsigned int makematrix()
{
	unsigned int r, c;

	printf("请输入矩阵行列数,用空格隔开:");
	scanf_s("%d %d", &r, &c);

	A = (double**)malloc(sizeof(double*)*r);//创建一个指针数组,把指针数组的地址赋值给a ,*r是乘以r的意思
	for (int i = 0; i < r; i++)
		A[i] = (double*)malloc(sizeof(double)*c);//给第二维分配空间
	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++)
			A[i][j] = 0.0;
	}

	b = (double*)malloc(sizeof(double)*r);
	for (int i = 0; i < r; i++)
	{
		b[i] = 0.0;
	}
	x = (double*)malloc(sizeof(double)*c);
	for (int i = 0; i < c; i++)
	{
		x[i] = 0.0;
	}

	L = (double**)malloc(sizeof(double*)*r);//创建一个指针数组,把指针数组的地址赋值给a ,*r是乘以r的意思
	for (int i = 0; i < r; i++)
		L[i] = (double*)malloc(sizeof(double)*c);//给第二维分配空间
	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++)
			L[i][j] = 0.0;
	}
	U = (double**)malloc(sizeof(double*)*r);//创建一个指针数组,把指针数组的地址赋值给a ,*r是乘以r的意思
	for (int i = 0; i < r; i++)
		U[i] = (double*)malloc(sizeof(double)*c);//给第二维分配空间
	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++)
			U[i][j] = 0.0;
	}
	D = (double**)malloc(sizeof(double*)*r);//创建一个指针数组,把指针数组的地址赋值给a ,*r是乘以r的意思
	for (int i = 0; i < r; i++)
		D[i] = (double*)malloc(sizeof(double)*c);//给第二维分配空间
	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++)
			D[i][j] = 0.0;
	}
	y = (double*)malloc(sizeof(double)*c);
	for (int i = 0; i < c; i++)
	{
		y[i] = 0.0;
	}
	return r;
}
//提示用户输入一个方阵的内容 还有常数向量 计算精度
void getmatrix(void)//输入矩阵并呈现
{
	printf("请按行从左到右依次输入系数矩阵A,不同元素用空格隔开\n");
	for (int i = 0; i < RANK; i++)
	{
		for (int j = 0; j<RANK; j++)
		{
			scanf_s("%lf", &A[i][j]);
		}
	}
	printf("系数矩阵如下\n");
	for (int i = 0; i < RANK; i++)
	{
		for (int j = 0; j<RANK; j++)
		{
			printf("%g\t", A[i][j]);
		}
		printf("\n");
	}
	printf("请按从上到下依次输入常数列b,不同元素用空格隔开\n");
	for (int i = 0; i<RANK; i++)
	{
		scanf_s("%lf", &b[i]);
	}
	printf("常数列如下\n");
	for (int i = 0; i<RANK; i++)
	{
		printf("%g\t", b[i]);
	}printf("\n");
	printf("请输入计算精度:(例如:0.0001)\n");
	scanf_s("%lf", &calculate_e);
	printf("计算结果的精度为:%g\n", calculate_e);
}

bool Jacobi_calculation(void)//Jacobi迭代法解线性方程组
{
	double get_add = 0.0,get_e = 0.0;
	printf("利用以上A与b组成的增广阵进行Jacobi迭代法法计算方程组\n");
	for (int i = 0; i < RANK; i++) //初始迭代值为0
	{
		x[i] = 0.0;
		y[i] = 0.0;
	}
	for (int k = 0; k < 100; k++)//最大迭代100次,认为发散
	{
		for (int i = 0; i < RANK; i++)//存上一次的值 用于求误差
		{
			x[i] = y[i];
		}
		for (int i = 0; i < RANK; i++)//迭代一遍
		{
			get_add = 0;
			for (int j = 0; j < RANK; j++)
			{
				get_add = get_add + A[i][j] * x[j];
			}
			y[i] = (-get_add + A[i][i] * x[i] + b[i]) / A[i][i];
		}
		get_add = 0;
		for (int i = 0; i < RANK; i++)//求无穷大范数
		{
			get_add = (fabs(x[i] - y[i])>get_add)? fabs(x[i] - y[i]): get_add;
		}
		if (fabs(get_add) <= calculate_e)
		{
			printf ("迭代次数为:%d",k + 1);
			break;
		}
		if (k == 99)//失效
		{
			return false;
		}
	}
	for (int i = 0; i < RANK; i++) //交换xy
	{
		double temp;
		temp = x[i];
		x[i] = y[i];
		y[i] = temp;
	}
	printf("求解x,解得:\n");
	for (int i = 0; i<RANK; i++)
	{
		printf("x%d = %g\n", i + 1, x[i]);
	}
}

bool Gusse_Seidel_calculation(void)//Gausse_Seidel迭代法解线性方程组
{
	double get_add = 0.0, get_e = 0.0;
	printf("利用以上A与b组成的增广阵进行Gausse_Seidel迭代法法计算方程组\n");
	for (int i = 0; i < RANK; i++) //初始迭代值为0
	{
		x[i] = 0.0;
		y[i] = 0.0;
	}
	for (int k = 0; k < 100; k++)//最大迭代100次,认为发散
	{
		for (int i = 0; i < RANK; i++)//存上一次的值 用于求误差
		{
			y[i] = x[i];
		}
		for (int i = 0; i < RANK; i++)//迭代一遍
		{
			get_add = 0;
			for (int j = 0; j < RANK; j++)
			{
				get_add = get_add + A[i][j] * x[j];
			}
			x[i] = (-get_add + A[i][i] * x[i] + b[i]) / A[i][i];
		}
		get_add = 0;
		for (int i = 0; i < RANK; i++)//求无穷大范数
		{
			get_add = (fabs(x[i] - y[i])>get_add) ? (x[i] - y[i]) : get_add;
		}
		if (fabs(get_add) <= calculate_e)
		{
			printf("迭代次数为:%d", k + 1);
			break;
		}
		if (k == 99)//失效
		{
			return false;
		}
	}
	printf("求解x,解得:\n");
	for (int i = 0; i<RANK; i++)
	{
		printf("x%d = %g\n", i + 1, x[i]);
	}
}

int main()
{
	bool retry;

_again:
	RANK = makematrix();
	getmatrix();
	retry = Jacobi_calculation();
	if (retry == false)
	{
		printf("Jacobi迭代法失效,以下使用Gausse_Seidel迭代法计算\n");
	}
	retry = Gusse_Seidel_calculation();
	if (retry == false)
	{
		printf("Gausse_Seidel迭代法失效\n");
	}

	printf("计算完成,按回车退出程序或按1重新输入矩阵\n");
	getchar();
	if ('1' == getchar())	goto _again;
	return 0;
}

按设计的提示为所欲为 老老实实输入题目的系数矩阵和常数向量后,得到运行结果:
在这里插入图片描述
可以看到,通过不断迭代可以达到非常高的精度。

  • 26
    点赞
  • 113
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
以下是使用迭代法求解线性方程组C语言代码: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define N 3 void gauss_seidel(double a[N][N], double b[N], double x[N], int max_iter, double tol) { int iter = 0; double error = 0.0, sum = 0.0; double x_new[N]; while (iter < max_iter) { for (int i = 0; i < N; i++) { sum = 0.0; for (int j = 0; j < N; j++) { if (j != i) { sum += a[i][j] * x[j]; } } x_new[i] = (b[i] - sum) / a[i][i]; } error = fabs(x_new[0] - x[0]); for (int i = 0; i < N; i++) { error = fmax(error, fabs(x_new[i] - x[i])); x[i] = x_new[i]; } if (error < tol) { printf("Converged after %d iterations\n", iter + 1); return; } iter++; } printf("Failed to converge after %d iterations\n", max_iter); } int main() { double a[N][N] = {{4.0, 1.0, -1.0}, {2.0, 7.0, 1.0}, {1.0, -3.0, 12.0}}; double b[N] = {3.0, -5.0, 14.0}; double x[N] = {0.0, 0.0, 0.0}; int max_iter = 1000; double tol = 1e-6; gauss_seidel(a, b, x, max_iter, tol); for (int i = 0; i < N; i++) { printf("x[%d] = %g\n", i, x[i]); } return 0; } ``` 其中,`a`是系数矩阵,`b`是常数向量,`x`是待求解的未知向量。`max_iter`是最大迭代次数,`tol`是容差。在函数`gauss_seidel`中,使用了高斯-塞德尔迭代法求解线性方程组。循环中,每次更新`x_new`后,计算当前的误差,如果误差小于容差,则认为已经收敛,函数返回。如果迭代次数达到最大值,但仍未收敛,则函数返回。最后在`main`函数中,给定系数矩阵、常数向量、初始、最大迭代次数和容差,调用`gauss_seidel`函数求解线性方程组,并输出结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值