DeepSeek-R1 本地部署配置清单,满血版配置逆天了。。。

学习资料:DeepSeek 从入门到精通(免费领取)


大家好,我是R哥。

DeepSeek 总是服务繁忙,很多人都想在本地部署,那你知道部署 DeepSeek 模型运行需要什么样的硬件配置吗?

为了帮大家省点时间和踩坑,我就整理了一篇关于 DeepSeek R1 各模型的硬件需求清单,并结合市场价格估算一下预算。

DeepSeek R1 各模型的硬件需求清单(估算):

模型版本

参数量

模型大小

CPU

显卡

内存

磁盘空间

成本

1.5b

15亿

1.1GB

普通四核及以上处理器

非必须

16GB+

50GB+

5000以内

7b

70亿

4.7GB

6 核或 8 核处理器

RTX 3060 及以上

32GB+

100GB+

1万以内

8b

80亿

4.9GB

6 核或 8 核处理器

RTX 3060 及以上

32GB+

100GB+

1万以内

14b

140亿

9GB

8 核及以上处理器

RTX 4090 及以上

64GB+

200GB+

2、3万

32b

320亿

20GB

8 核及以上处理器

RTX 3090/A100 及以上

128GB+

500GB+

几万-10来万

70b

700亿

43GB

12 核及以上处理器
推荐高端 Intel/AMD 处理器

A100/V100 显卡及以上
可能还得多个显卡一起用

128GB+

1TB+

40万+

671b

6710亿

404GB

高性能、多核CPU,建议多台服务器配置

多个 A100/V100 显卡

512GB+

2TB+

200万+


以上仅供参考,数据估算并参考自网络。

你是不是被 DeepSeek-R1 1.5b、7b、8b、14b、32b、70b、671b 这些概念绕晕了?请看这篇:DeepSeek-R1 1.5b、7b、8b、14b、32b、70b、671b 都是什么鬼?

选哪种类型的 DeepSeek-R1 模型,就得看看自己的电脑配置和钱包,也得看你的实际应用场景:

  • 如果只是简单的文本处理、学习用途或者小型应用,选 1.5b、7b、8b 就够了。

  • 如果要生成高质量文本、中型应用,推荐使用 14b 及以上的型号。

  • 如果是企业级应用、大型应用,就必须上 32b、70b、671b 型号。

大家都喜欢解锁超能力,都想无脑上 671b 满血版,但看看硬件配置和价格,这哪是平常人能玩得起的?想用 671b 满血版的别在自己的电脑瞎折腾了,好好用云服务吧。

所以,如果想自己部署 DeepSeek,出于成本考虑,建议还是在云上测试一下不同模型的性能表现,评估哪个型号是否满足需求后,再决定部署该型号的模型。

最后,也希望这篇文章能帮助你选对模型,少踩坑!

未完待续,下篇分享下本地部署 DeepSeek 实战教程,公众号持续分享「DeepSeek」及 AI 实战干货,关注「AI技术宅」公众号和我一起学 AI。


版权声明: 本文系公众号 "AI技术宅" 原创,转载、引用本文内容请注明出处,抄袭、洗稿一律投诉侵权,后果自负,并保留追究其法律责任的权利。

< END >

学习资料:

DeepSeek 从入门到精通手册(免费领取)

DeepSeek 如何赋能职场应用(免费领取)

DeepSeek 普通人如何获取红利(免费领取)

推荐阅读:

DeepSeek 是什么?

DeepSeek 杀疯了,国家队下场了!

DeepSeek-R1 1.5b ... 671b 都是什么鬼?

劲爆!微信宣布接入 DeepSeek R1!!

52 条 DeepSeek 喂饭级指令,非常齐全!

更多 ↓↓↓ 关注公众号 ✔ 标星⭐ 哦

在「AI技术宅」公众号后台回复:deepseek,免费获取一份《DeepSeek 从入门到精通》使用教程,超详细。

### DeepSeek-R1本地部署配置要求 #### 硬件配置需求 对于希望在本地环境中成功部署DeepSeek-R1的大模型,计算机需满足一定的硬件条件。具体来说,为了确保模型能够高效稳定地运行,推荐使用的CPU应具备较高的性能以及足够的核心数来支持并行计算任务;内存方面则至少需要32GB RAM以保障数据处理过程中的流畅度;最为重要的是GPU的选择——鉴于该类AI应用对图形处理器的强大依赖性,建议配备NVIDIA RTX系列或更高级别的产品,并且其显存容量应当依据所选模型大小而定,通常情况下不小于8GB为宜[^1]。 #### 软件环境搭建指南 除了必要的物理设施外,构建合适的软件平台同样不可或缺。操作系统可选用Windows、Linux或是macOS本,在此之上还需完成特定组件的安装工作: - **Ollama**:作为启动与管理容器化应用程序的关键工具,它允许用户轻松获取官方发布的预训练权重文件并通过简单的指令实现快速上手操作; - 对于不同类型的主机系统而言,具体的设置流程会有所差异: - 在Windows环境下,可能涉及到WSL子系统的启用及相关驱动程序更新等前置作业; - 针对Linux发行,则侧重于通过包管理器安装依赖库以及调整内核参数优化I/O效率等方面; - macOS用户或许要借助Homebrew这样的第三方源简化部分环节的操作复杂度[^2]。 ```bash # 安装ollama (示例基于Ubuntu Linux) sudo apt-get update && sudo apt-get install ollama ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值