Langchain开发实战:本地化LLM和部署
文章平均质量分 97
聚焦于Langchain技术领域的实战操作,特别是针对大模型的本地化处理及其部署流程。本专栏将深入浅出地介绍如何将先进的大语言模型技术进行本地化适配,以满足特定环境下的应用需求,同时详细阐述从模型准备到实际部署的全过程,包括环境配置、模型调优、接口对接及性能优化等关键环节。
我是彪彪彪啊
君子坐而论道,少年起而行之。
展开
-
4.文件规划:让你的Python更加简洁
在本节课中,我们学习到了项目中的文件规划,并且手写了一个Python当中的单例模式。并且学习了如何使用FastAPI组织一个大型项目架构。除此之外,我们还封装了一堆工具和中间件,我希望让大家通过看这一篇文章,就可以触类旁通,明白FastAPI各种组件的搭配和使用(不光是这个项目,这一套架构相当通用)。好了,下一篇文章,我会将咱们的目光,再次转向大模型,因为现在大模型的调用,还是哒咩哒灭!原创 2024-10-10 09:27:12 · 644 阅读 · 0 评论 -
3.FastAPI:让大模型飞上云端
在这一节课中,我们分析了Python中的Web三大框架,并且选择了FastAPI作为我们的主框架使用。使用FastAPI简单的搭建了一个"Hello World",初步熟悉一下FastAPI的接口开发。在main.py函数中,我们成功的搭建了一个大模型的流式服务,并且提供了测试代码。初步熟悉了unicorn,FastAPI和pydantic库,为以后更方便的开发打下基础。原创 2024-10-08 17:16:00 · 1028 阅读 · 0 评论 -
2.LLM:轻松与大模型对话
初步搭建了一个LLM服务的环境,为了以后更好的使用大模型服务打好基础。从数据安全,快速部署等方面,简述了为什么要搭建本地大模型服务,并且搭建本地大模型有什么意义。快速的分析和加载了3个模型,包括Qwen系列,ChatGLM3和ChatGLM4,从我自己的使用体验来说,分析了一下她们各自优劣势。大家按照需求选一个模型,作为咱们的以后的基座模型,以此来构建我们的大模型服务。原创 2024-09-19 10:23:45 · 977 阅读 · 0 评论 -
1.环境配置利器:Conda
在介绍conda之前,小编先引用Anaconda官网中的一句话。Anaconda® 是一个包管理器、一个环境管理器、一个 Python/R 数据科学发行版以及超过 7,500 个开源包的集合。Anaconda 是免费且易于安装的,它提供免费的社区支持。它允许你安装、更新和卸载各种库和依赖,更是一个环境管理器,能让你轻松创建、保存、加载和切换不同的开发环境。这意味着,你可以为每个项目设置独立的环境,每个环境中安装特定版本的库,从而有效避免版本冲突和依赖问题。并且,Conda可以自动处理环境中的依赖问题!原创 2024-09-19 09:55:57 · 1304 阅读 · 1 评论