【youcans 的 OpenCV 例程200篇】183.基于轮廓标记的分水岭算法

OpenCV 例程200篇 总目录-202205更新

【youcans 的 OpenCV 例程200篇】180.基于距离变换的分水岭算法
【youcans 的 OpenCV 例程200篇】181.基于 Sobel 梯度的分水岭算法
【youcans 的 OpenCV 例程200篇】182.基于形态学梯度的分水岭算法
【youcans 的 OpenCV 例程200篇】183.基于轮廓标记的分水岭算法


【youcans 的 OpenCV 例程200篇】183.基于轮廓标记的分水岭算法


7. 图像分割之分水岭算法

分水岭算法是一种图像区域分割法,以临近像素间的相似性作为重要特征,从而将空间位置相近且灰度值相近的像素点互相连接起来,构成一个封闭的轮廓。

分水岭算法是基于形态学的图像分割方法,体现了边缘检测、阈值处理和区域提取的概念和思想,往往会产生更稳定的分割结果。算法的实现过程可以理解为洪水淹没的过程:最低点首先被淹没,然后水逐渐淹没整个山谷;水位升高到一定高度就会溢出,于是在溢出位置修建堤坝;不断提高水位,重复上述过程,直到所有的点全部被淹没;所建立的一系列堤坝就成为分隔各个盆地的分水岭。

分水岭的计算过程是一个迭代标注过程,通过寻找集水盆和分水岭对图像进行分割。经典的分水岭算法分为排序过程和淹没过程两个步骤,首先对每个像素的灰度级从低到高排序,然后在从低到高的淹没过程中,对每一个局部极小值在 h 阶高度的影响域进行判断及标注。

OpenCV 提供了函数 cv.watershed 实现基于标记的分水岭算法。

使用函数 cv.watershed 需要输入一个CV_32S 类型的标记图像,图像中每个非零像素代表一个标签。对图像中部分像素做标记,表明它的所属区域是已知的。

cv.watershed(image, markers[, ]	) → markers 

参数说明:

  • image:输入图像,8-bit/3-channel 彩色图像
  • markers:标记图像,32-bit 单通道图像,大小与 image 相同

注意事项:

  • 分水岭算法要求必须在标记图像 markers 中用索引勾勒出需要分割的区域,每个区域被赋值为 1、2、3… 等索引编号,对应于不同的目标物体。
  • 图像标记 markers 中未知区域的像素值设置为 0,通过分水岭算法确定这些像素属于背景还是前景区域。
  • 输出的图像标记 markers 中,每个像素都被赋值为 1、2、3… 等索引编号,或以 -1 表示区域之间的边界(分水岭)。

OpenCV 提供了函数 cv.distanceTransform 实现距离变换,计算图像中每个像素到最近的零像素点的距离。

函数说明:

cv.distanceTransform(src, distanceType, maskSize[, dst=None, dstType=CV_32F]) → dst
cv.distanceTransformWithLabels(src, distanceType, maskSize[, dst=None, labels=None, labelType=DIST_LABEL_CCOMP]) → dst, labels

参数说明:

  • src:输入图像,8-bit 单通道灰度图像
  • distanceType:距离的类型
    • cv.DIST_USER:用户定义的距离
    • cv.DIST_L1: d i s t = ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ dist = |x1-x2|+|y1-y2| dist=x1x2+y1y2
    • cv.DIST_L2:欧几里德距离
    • cv.DIST_C: d i s t = m a x ( ∣ x 1 − x 2 ∣ , ∣ y 1 − y 2 ∣ ) dist = max(|x1-x2|, |y1-y2|) dist=max(x1x2,y1y2)
  • maskSize:距离变换遮罩的大小,通常取 3, 5
  • labelType:生成的标签数组的类型
    • cv.DIST_LABEL_CCOMP:每个连接的零组件(及最接近连接组件的所有非零像素)被指定相同的标签
    • cv.DIST_LABEL_PIXEL:每个零像素(及离它最近的所有非零像素)都有自己的标签
  • dst:计算距离的输出图像,8-bit 或 32-bit 单通道图像,大小与 src 相同
  • labels:标签的输出图像,CV_32SC1类型, 大小与 src 相同

例程 11.40 基于轮廓标记的分水岭算法

基于标记的分水岭算法的思想是利用先验知识来帮助分割。本例程先用梯度算子进行边缘检测,然后通过查找图像轮廓,生成标记图像来引导分割。

基于轮廓标记的分水岭算法的步骤为:

(1)对图像进行梯度处理获得梯度图像;
(2)对梯度图像查找和绘制轮廓;
(3)基于轮廓图像生成标记图像;
(4)基于标记图像使用分水岭算法进行分割,得到各个分割目标的轮廓;
(5)把目标的轮廓添加到原始图像上;
(6)用随机颜色填充分割图像。

    # 11.40 基于轮廓标记图像的分水岭算法
    img = cv2.imread("../images/imgLena.tif", flags=1)  # 读取彩色图像(BGR)
    # img = cv2.imread("../images/imgTina.png", flags=1)  # 读取彩色图像(BGR)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转为灰度图像

    # 查找和绘制图像轮廓
    Gauss = cv2.GaussianBlur(gray, (5,5), sigmaX=4.0)
    grad = cv2.Canny(Gauss, 50, 150)  # Canny 梯度算子

    # grad = cv2.Canny(gray, 80, 150)  # Canny 梯度算子
    grad, contours, hierarchy = cv2.findContours(grad, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  # 查找图像轮廓
    markers = np.zeros(img.shape[:2], np.int32)  # 生成标识图像,所有轮廓区域标识为索引号 (index)
    for index in range(len(contours)):  # 用轮廓的索引号 index 标识轮廓区域
        markers = cv2.drawContours(markers, contours, index, (index, index, index), 1, 8, hierarchy)
    ContoursMarkers = np.zeros(img.shape[:2], np.uint8)
    ContoursMarkers[markers>0] = 255  # 轮廓图像,将所有轮廓区域标识为白色 (255)

    # 分水岭算法
    markers = cv2.watershed(img, markers)  # 分水岭算法,所有轮廓的像素点被标注为 -1
    WatershedMarkers = cv2.convertScaleAbs(markers)
    # 用随机颜色填充分割图像
    bgrMarkers = np.zeros_like(img)
    for i in range(len(contours)):  # 用随机颜色进行填充
        colorKind = [np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)]
        bgrMarkers[markers==i] = colorKind
    bgrFilled = cv2.addWeighted(img, 0.67, bgrMarkers, 0.33, 0)  # 填充后与原始图像融合

    print(len(contours))
    plt.figure(figsize=(10, 6))
    plt.subplot(231), plt.axis('off'), plt.title("Origin image")
    plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # 显示 img(RGB)
    plt.subplot(232), plt.axis('off'), plt.title("Gradient")
    plt.imshow(grad, 'gray')  # Canny 梯度算子
    plt.subplot(233), plt.axis('off'), plt.title("Contours markers")
    plt.imshow(ContoursMarkers, 'gray')  # 轮廓
    plt.subplot(234), plt.axis('off'), plt.title("Watershed markers")
    plt.imshow(WatershedMarkers, 'gray')  # 确定背景
    plt.subplot(235), plt.axis('off'), plt.title("Color Markers")
    plt.imshow(cv2.cvtColor(bgrMarkers, cv2.COLOR_BGR2RGB))
    plt.subplot(236), plt.axis('off'), plt.title("Cutted image")
    plt.imshow(cv2.cvtColor(bgrFilled, cv2.COLOR_BGR2RGB))
    plt.tight_layout()
    plt.show()

在这里插入图片描述



(本节完)


版权声明:

OpenCV 例程200篇 总目录-202205更新
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/124813571)

Copyright 2022 youcans, XUPT
Crated:2022-5-15


欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中

【youcans 的 OpenCV 例程200篇】180.基于距离变换的分水岭算法
【youcans 的 OpenCV 例程200篇】181.基于 Sobel 梯度的分水岭算法
【youcans 的 OpenCV 例程200篇】182.基于形态学梯度的分水岭算法
【youcans 的 OpenCV 例程200篇】183.基于轮廓标记的分水岭算法
【youcans 的 OpenCV 例程200篇】184.鼠标交互标记的分水岭算法
更多内容,请见:
【OpenCV 例程200篇 总目录-202206更新】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youcans_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值