【医学影像 AI】HVDROPDB:早产儿视网膜病变研究数据集


0. 论文简介


0.1 基本信息

2024年6月,印度 MIT World Peace University 的 Agrawal R, Walambe R, Kotecha K. 等在 Data in Brief 发表论文 “HVDROPDB:早产儿视网膜病变研究数据集(HVDROPDB datasets for research in retinopathy of prematurity)”。

HVDROPDB 是第一个公开发表的用于早产儿眼底图像视网膜结构分割的数据集。该数据集由ROP专家组 标注,并手动标注了地面真相(Ground Truth),以帮助研究人员开发可解释的自动筛查系统。

论文下载: doi:10.1016/j.dib.2023.109839
引用格式:
Agrawal R, Walambe R, Kotecha K, Gaikwad A, Deshpande CM, Kulkarni S. HVDROPDB datasets for research in retinopathy of prematurity. Data Brief. 2023 Nov 25;52:109839. doi: 10.1016/j.dib.2023.109839.
数据集下载: doi:10.17632/xw5xc7xrmp.3

在这里插入图片描述


0.2 摘要

早产儿视网膜病变(ROP)是一种可能导致早产儿失明的视网膜疾病。早期发现和治疗ROP可以预防这种失明。ROP筛查的金标准技术是由眼科医生进行的间接检眼镜检查。医疗专业人员的稀缺和ROP分级中观察者之间的异质性是筛查的两个问题。研究人员采用人工智能(AI)驱动的ROP筛查系统来协助医学专家。开发这些系统的一个主要障碍是眼底图像注释数据集的不可用。

在分析视网膜图像时,使用一些解剖学标志来识别视网膜上 ROP 的特征,这些标志包括:视盘(Optic Disc)、黄斑(Macula)、血管(Blood Vessels)和脊(Ridge)。

HVDROPDB 是第一个公开发表的用于早产儿眼底图像视网膜结构分割的数据集,由两种不同的印度人群成像系统收集。该数据集主要用于视网膜图像中的病变分割,并由 ROP专家组 标注。每个数据集都包含早产儿的视网膜眼底图像,并手动标注了掩模图像(Ground Truth),以帮助研究人员开发可解释的自动筛查系统。


1. 数据的价值

ROP可能导致早产儿失明。由于新生儿重症监护的改善,早产人数正在增加,ROP的负担预计将急剧上升。遗憾的是,眼科医生与患者的比例很低,不同专家的诊断也不一致。需要基于人工智能的自动筛查系统来协助临床医生进行ROP筛查。但是目前还没有公开发布的 ROP数据集。

该数据集提供了由 RetCam 和 Neo 两种成像系统采集的早产儿的视网膜图像,并进行了标注。眼底图像的 ground truths(masks)(标注的真值/掩模)是使用 Adobe Photoshop 手动制作的,用于分割视盘(Optic Disc)、血管(Vessels)和脊线/分界线(Demarcation Line/Ridge)。研究人员可以使用这些图像和手动标注的分割数据,来分割视网膜结构,检测分区(Zone)和分期(Stage) ,并开发可解释的自动ROP筛查系统。

我们开发了一个框架,用于自动检测和解释早产儿视网膜图像中的关键特征,包括 ROP的不同区域(zones)、病变程度(plus) 和 分期(stages)。


2. 目的

早产儿视网膜病变(ROP)是一种影响早产儿视网膜的疾病。它通常影响双眼,并可能导致终身视力受损或失明。由于中低收入国家新生儿重症监护的改善,ROP失明疾病正在逐渐增多[1]。ROP可能在婴儿出生几周后进展或消退。如果疾病进展到3期,并伴有plus病变,则可能需要侵入性手术来阻止进一步的视网膜脱离[2]。因此,及时筛查对于控制ROP进展是非常重要的。医学专家的稀缺是实施 ROP 筛查系统的主要困难。为了帮助这些专家,研究人员正在开发自动筛查系统。而缺乏公共标注数据集是开发和解释这些系统时的一个关键问题[3,4]。

ROP 的严重性由以下几个因素来定义[5]:

  • 血管生长区域(Zones):ROP的发病位置,可以根据血管的分布区域来确定。
  • 分期(Stages):根据异常血管生长的严重程度来分阶段。
  • 加重病变(Plus Disease):血管的增大和弯曲,这是ROP进展的重要标志。
  • 病变扩展(Extent):受影响的钟点数(clock hours),用于量化病变的广度。

本研究旨在提供一个ROP数据集,用于分割分界线/脊线、视盘和血管,以创建一个可解释的 ROP 诊断系统。


3. 数据说明

3.1 数据的收集

HVDROPDB数据集由早产儿的后部视图和颞部视图的眼底图像组成,如图1 和图2 所示。图1a 和2a 显示了视网膜后部图像(从视网膜的后方拍摄的图像),图1b 和2b 显示了视网膜颞部图像(从视网膜的侧面拍摄的图像)。

HVDROPDB 以印度浦那的 H.V. Desai 眼科医院命名,该医院负责收集早产儿的眼底图像。这些图像由 RetCam(Clarity MSI,美国)和 Neo(Forus Healthcare,印度)成像系统捕获,如图3所示。RetCam 在全球范围内使用;Neo 的价格合理、便于携带,在印度非常受欢迎。RetCam 和 Neo 图像在数据集中会被单独提供。

在这里插入图片描述
图1:RetCam图像(a)后视图,(b)颞部视图。

在这里插入图片描述
图2:Neo 图像(a)后视图,(b)颞部视图。

在这里插入图片描述

图3:RetCam 和 Neo 成像系统


3.2 数据集的组成

HVDROPDB RetCam Neo Segmentation 是首个公开发布 用于分割ROP图像的数据集。它旨在帮助研究自动 ROP筛查系统及其解释。该数据集包括了视网膜结构的标注数据(ground truths),这些标注数据将有助于分割视网膜中的关键结构,这对于检测 ROP区域(zones)和病变阶段(stages)非常重要。

  • HVDROPDB_RetCam_Neo_Segmentation 数据集由 HVDROPDB-OD、HVDROPD-BV 和 HVDROPDC-RIDGE 三个主要数据集组成,分别用于视盘(Optic Disc)、血管(Blood Vessels)和分界线/脊线(Demarcation Line/Ridge)的分割。

  • 每个主要数据集包含4个子数据集,每个子数据集包含 50幅图像及其掩模(ground truth),如表1 所示。

  • 总共提供了 12个子数据集。


表1:HVDROPDB_RetCam_Neo_SSegmentation 数据集的描述。
在这里插入图片描述


3.3 视盘分割图像

视神经盘(Optic Disc)是眼底图像中重要的解剖结构,通过后部视图获取。分割的掩模图像是使用Adobe Photoshop Reader手动创建的,如图4 所示。

HVDROPDB-OD 数据集 用于视盘的分割,包含以下子集:

  • RetCam_OpticDisc_images,通过 RetCam 成像系统捕获的视盘图像。
  • RetCam_OpticDisc_masks,与 RetCam 对应的视盘掩模图像。
  • Neo_OpticDisc_images,通过 Neo 成像系统 捕获的视盘图像。
  • Neo_OptictDisc_mask,与 Neo 对应的视盘掩模图像。

在这里插入图片描述
图4:用于视盘分割的原始图像和掩模图像:(a)Neo 原始图像,(b)Neo 掩模图像,(c)RetCam 原始图像,(d)RetCam 掩模图像。


3.4 血管分割图像

HVDROPDB-BV 数据集 用于 视网膜血管(Blood Vessels) 的分割。

选取 100 张图像创建 HVDROPDB-BV 数据集,这些图像来自于 后部视图(posterior view) 和 颞视图(temporal view)。如图5所示,每张图像都有对应的分割掩膜图像(Ground Truth),即血管的分割掩膜(masks)。

HVDROPDB-BV 数据集用于 视网膜血管的分割,包含4 个子集,每个子数据集各有50幅图像。

  • RetCam_Vessels_images:通过 RetCam 成像系统 捕获的视网膜血管图像。
  • RetCam_Vessels_masks:与 RetCam 对应的血管掩模图像。
  • Neo_Vessels_images:通过 Neo 成像系统 捕获的视网膜血管图像。
  • Neo_Vessels_masks:与 Neo 对应的血管掩模图像。

在这里插入图片描述

图5:血管分割的原始图像和掩模图像:(a)Neo 原始图像,(b)Neo 掩模图像,(c)RetCam 原始图像,(d)RetCam 掩模图像。


3.5 分界线/脊线分割图像

HVDROPDB-RIDGE 数据集 专门用于 分界线/脊线(Demarcation Line/Ridge) 的分割。

该数据集包含了 100张来自 后部视图(posterior view) 和 颞视图(temporal view)的图像,其中包含了 ROP 1期、2期和3期 的不同阶段。如图 6 所示,每张图像都有对应的分割掩膜图像(Ground Truth)。

HVDROPDB-BV 数据集包含4 个子集,每个子数据集各有50幅图像。

  • RetCam_Ridge_images:通过 RetCam 成像系统 捕获的分界线图像。
  • RetCam_Ridge_masks:与 RetCam 对应的分界线掩模图像。
  • Neo_Ridge_images:通过 Neo 成像系统 捕获的分界线图像。
  • Neo_Ridge_masks:与 Neo 对应的分界线掩模图像。

在这里插入图片描述

图6:用于分界线/脊线分割的原始图像和掩模:(a)Neo 原始图像,(b)Neo 掩模图像,(c)RetCam 原始图像,(d)RetCam 掩模图像。


4. 实验设计、材料和方法

数据集准备过程如图7所示。

数据集的图像由位于浦那(Pune )的 PBMA H.V.Desai 眼科医院提供,拍摄于2009年至2022年。受试者是医院筛查ROP的早产儿。这些图像是由训练有素的验光师使用两台具有 12 0 o 120^o 120o视场(FOV)的 Neo 或 Retcam 相机拍摄的。
将后视图和颞部视图图像保存在数据库中。在一位有25年经验的高级ROP专家的指导下,由一组具有 5年以上经验的 ROP 专家团队对图像进行标注。在进行标注之前,进行了 观察者间变异性测试,其 Kappa 值为 0.92。然而,由于没有外部专家参与标注,因此不能排除主观偏见的可能性。
这些图像在HVDROPDB数据集中保存为不同的ROP类别。

在这里插入图片描述
图7:数据集的准备过程。


4.1 数据采集

受试者是妊娠26至36周的早产婴儿,体重不超过3000克。他们的个人信息会严格保密,并获得了父母的书面知情同意,将数据用于研究目的。

在图像采集之前,使用滴眼液(稀释的苯肾上腺素和托品酰胺)来扩张瞳孔。每只眼睛滴三次眼药水,间隔10分钟。第三滴眼药水后停止喂养婴儿。

使用 RetCam 和 Neo 获取婴儿每只眼睛的后视(posterior)、颞视(temporal)、上视(superior)、下视(inferior)和鼻视(nasal)图像。
每只眼睛采集了大约 2 到12张图像,从1100名患者中采集了10,570张RetCam图像和8,280张Neo图像。
RetCam 拍摄的图像分辨率为 640×480 像素,以.png格式存储,图像大小约为623KB;而 Neo 拍摄的图像分辨率是 2040×2040 像素,以.jpeg格式存储,图像大小约为 223KB。


4.2 图像标注

所有采集的早产婴儿眼底图像被汇总并存储在一个数据库中。
这些图像由一组在远程医疗模型的ROP图像分级方面经验丰富的医学专家进行标注。为了确保标注过程统一,每个专家都经过培训,以规范注释过程。标注过程中,每位专家每周用 2小时的时间来进行图像标注,确保高效的标注进度。
作者与ROP专家根据现有的文献对标注过程进行了讨论和分析,确保标注规则与行业标准一致。由于时间视图和后视图的图像足以进行诊断,团队决定为每只眼睛选择包含这两种视角的图像进行标注。
我们排除了激光治疗的婴儿和视网膜脱离(ROP并发症)的图像,以避免影响标注的准确性。
RetCam和Neo设备分别提供了不同的图像数据,约1900 张RetCam图像和1100张Neo图像被分别存储在RetCam和Neo数据库中。
在标注过程中,正常图像的数量远高于ROP图像,这有助于平衡数据集的类别分布。
为了使数据集更加具有鲁棒性,我们没有删除质量差的图像。
由于标注分割掩膜图像(Ground Truth)的工作非常复杂,我们目前只提供了部分图像,我们的研究和数据收集仍在进行中。

ROP专家团队根据图像中的病变、正常结构和视网膜的不同象限来分配每个图像的参考诊断。通过这些标准,专家可以对ROP的不同阶段和类型做出准确的分类。
在图像标注过程中,ROP专家团队成员会对图像进行诊断。每个图像的诊断过程会被详细说明。如果团队成员之间对评估存在差异时,由高级 ROP专家进行纠正或确认。

根据《早产儿视网膜病国际分类法》(ICROP),每一对图像(颞视图和后视图)都会被分类为以下几种情况,其中一些图像如图8所示。

  • Mature retina(成熟视网膜):没有ROP。
  • Zone I/II/III immature(I/II/III区未成熟):视网膜的不同区域存在ROP风险。
  • Zone I stage 1/2/3(I区第 1/2/3 期):ROP在 I 区的不同发展阶段。
  • Zone II stage 1/2/3(II区第 1/2/3 期):ROP在 II 区的不同发展阶段。
  • Zone III stage 1/2/3(III区第 1/2/3 期):ROP在 III 区的不同发展阶段。
  • Stage 4/5:ROP 的晚期阶段。
  • Aggressive-ROP(侵袭性ROP):进展迅速、危及视力的ROP类型。

成熟视网膜和 I/II/III区未成熟图像属于无 ROP的类别,这类图像相对常见,通常没有明显的ROP特征。
某些特定阶段的 ROP(如“Zone I Stage 3”)在数据集中没有足够的图像,可能是由于出现的频率较低。

在这里插入图片描述


4.3 研究内容

目前,研究重点是通过视网膜结构分割来解释ROP病情。这需要对视盘、血管和分界线/脊线进行像素级标记,以识别 ROP 的区域和阶段。因此,使用 HVDROPDB_RetCam_Neo_SSegmentation 数据集来分割视网膜结构。

HVDROPDB-RIDGE,HVDROPDB-OD 和 HVDROPDB-BV 是三个 ROP图像分割数据子集,它们分别用于不同的视网膜结构分割任务:

  • HVDROPDB-RIDGE:用于脊线(ridge)分割,包括后视图像和颞部视图,包含了 ROP 的不同阶段(Stage 1/2/3)。
  • HVDROPDB-OD:用于视盘分割,从后视图像中提取视盘区域。
  • HVDROPDB-BV:用于血管分割,包括后视图像和颞部视图,涉及大多数ROP类别。

ROP 专家在 HVDROPDB-OD、HVDROPD-BV和HVDROPDC-RIDGE 数据集中解释了视网膜结构,并手动标记了感兴趣的区域进行分割。作者和观察者使用 Adobe Photoshop 软件标注分割掩膜图像(Ground Truth) ,由 ROP 专业人员进行最终的确认。这是一项艰巨而耗时的任务,需要不断努力。

研究团队开发了一个框架,用于自动化分割视网膜血管结构。该框架基于上述三个数据集(HVDROPDB-OD, HVDROPDB-BV, HVDROPDB-RIDGE),使用 RetCam 和 Neo图像的数据,并结合检测ROP的不同区域(zones)和阶段(stages),来分割视网膜的血管结构 [6,7]。

使用 AG U-Net 方法[7] 对 Neo 和 RetCam 图像进行分割。对 HVDROPDB 数据集进行分割的性能指标如表2 和表3 所示。

所有数据集都以 70:10:20 的比例划分为训练集、验证集和测试集,随机状态的种子数为42。

在这里插入图片描述


在这里插入图片描述


5. 其它

伦理声明
从参与医院筛查计划的早产儿身上获得的照片以匿名的方式使用。作为程序的一部分,这些早产儿的父母提供书面知情同意书,允许在早产儿视网膜病变(ROP)筛查之前将数据用于研究和质量保证目的。机构伦理委员会于2020年4月13日获得批准(HVD/IEC/BHR/07/2020)。

数据集的获取

本数据集保存在 Mendeley Data 数据平台,可以供研究者下载。

数据集下载: Mendeley Data/xw5xc7xrmp.3

在这里插入图片描述

出版日期

收到日期:2023年8月21日
接受日期:2023年11月16日
出版日期:2023年11月25日

在这里插入图片描述


6. 参考文献

  1. Kim S.J., Port A.D., Swan R., Campbell J.P., Chan R.P., Chiang M.F. Retinopathy of prematurity: a review of risk factors and their clinical significance. Survey ophthalmol. 2018;63(5):618–637. doi: 10.1016/j.survophthal.2018.04.002.
  2. Stahl A., Lepore D., Fielder A., Fleck B., Reynolds J.D., Chiang M.F., Li J., Liew M., Maier R., Zhu Q., Marlow N. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomized controlled trial. The Lancet. 2019;394(10208):1551–1559. doi: 10.1016/S0140-6736(19)31344-3.
  3. Reid J.E., Eaton E. Artificial intelligence for pediatric ophthalmology. Curr. opin. ophthalmol. 2019;30(5):337–346. doi: 10.1097/ICU.0000000000000593.
  4. Agrawal R., Agrawal M., Kulkarni S., Kotecha K., &Walambe R. Quantitative analysis of research on artificial intelligence in retinopathy of prematurity. Library Philos. Practice. 2021:1–29.
  5. Chiang M.F., Quinn G.E., Fielder A.R., Ostmo S.R., Chan R.P., Berrocal A.…Zin A. International classification of retinopathy of prematurity. Ophthalmology. 2021;128(10):e51–e68. doi: 10.1016/j.ophtha.2021.05.031.
  6. Agrawal R., Kulkarni S., Walambe R., Kotecha K. Assistive framework for automatic detection of all the zones in retinopathy of prematurity using deep learning. J. Digital Imag. 2021;34(4):932–947. doi: 10.1007/s10278-021-00477-8.
  7. Agrawal R., Kulkarni S., Walambe R., et al. Deep dive in retinal fundus image segmentation using deep learning for retinopathy of prematurity. Multimed. Tools Appl. 2022 doi: 10.1007/s11042-022-12396-z.

版权说明:
本文由 youcans@xidian 对论文 HVDROPDB datasets for research in retinopathy of prematurity 进行摘编和翻译。该论文版权属于原文期刊和作者,本译文只供研究学习使用。

youcans@xidian 作品,转载必须标注原文链接:
【医学影像 AI】HVDROPDB:早产儿视网膜病变研究数据集 (https://youcans.blog.csdn.net/article/details/145646900)
Crated:2025-02

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youcans_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值