【医学影像】50个眼科影像数据集(1)分类任务
【医学影像】50个眼科影像数据集(2)分割任务
【医学影像】50个眼科影像数据集(3)其它任务
【医学影像AI】50个眼科影像数据集(3)其它任务
医学影像已经成为诊断疾病、制定治疗方案和监测病情的重要工具。医疗数据的获取,通常面对隐私、伦理等方面的限制。影像数据的稀缺性,尤其是在罕见疾病、特定人群或新兴成像技术中的数据不足,是人工智能(AI)技术研究和发展的主要挑战。此外,由于对专业知识和对经验的要求,医疗数据的标注通常要由专职医生完成。
作者整理了 50 个眼科影像开源 AI 数据集,介绍这些眼科影像数据集的基本信息和下载地址。上两篇介绍了分类任务和分割任务数据集,本文介绍用于其它任务的数据集。
6. 其它任务:眼底疾病
6.1 RETOUCH 眼底疾病分类数据集(2019)
影像类别:3D-OCT
检测部位:眼部-眼底
疾病类型:黄斑水肿
数据来源:Medical University of Vienna, Erasmus University Medical Center
数据用途:用于自动检测和分割视网膜不同类型液体
任务类型:分类,分割
样本数量:112
分类类别:3(视网膜内液 (IRF)、视网膜下液(SRF)和色素上皮脱离 (PED) )
作者:Bogunović H, Venhuizen F, Klimscha S
论文引用:Bogunović H, Venhuizen F, Klimscha S, et al. RETOUCH: The retinal OCT fluid detection and segmentation benchmark and challenge[J]. IEEE transactions on medical imaging, 2019, 38(8): 1858-1874.
论文下载:RETOUCH
数据集下载:grand-challenge
6.2 OCTA-500 眼底疾病分类数据集(2020)
影像类别:3D-OCT, 3D-OCTA
检测部位:眼部-眼底
疾病类型:黄斑水肿
数据来源:江苏省人民医院(Jiangsu Province Hospital )
数据用途:提供多模态的图像和注释、文本标签和分割标签
任务类型:分割
样本数量:500
作者:Mingchao Li, Kun Huang, Qiuzhuo Xu, Jiadong Yang, Yuhan Zhang, Zexuan Ji, Keren Xie, Songtao Yuan, Qinghuai Liu, and Qiang Chen
论文引用:Li M, Huang K, Xu Q, Yang J, Chen Q. et al., OCTA-500: A retinal dataset for optical coherence tomography angiography study. Med Image Anal. 2024 Apr;93:103092. doi: 10.1016/j.media.2024.103092.
论文下载:arxiv
数据集下载:ieee-dataport
github-chaosallen
6.3 OLIVES 糖尿病语义数据集(2022)
影像类别:多模态和时间序列:OCT/Fundus/Clinical/Biomarker
检测部位:眼部-眼底
疾病类型:糖尿病视网膜病变(DR)、糖尿病黄斑水肿(DME)
数据来源:Retina Consultants of Texas (Houston, TX, USA).
数据用途:为研究视觉眼部语义的眼科标签数据集
任务类型:分类
样本数量:1268
分类类别:多种方式
作者:M. Prabhushankar, K. Kokilepersaud, Y. Logan
论文引用:M. Prabhushankar, K. Kokilepersaud, Y. Logan, et al., “OLIVES Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics”, Advances in Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks, 2022
论文下载:neurips-OLIVES, arxiv-OLIVES
数据集下载:Github-olivesgatech, zenodo OLIVES, huggingface OLIVES
6.4 RAVIR 眼科手术视频数据集(2022)
影像类别:红外扫描激光检眼镜
检测部位:
疾病类型:
数据来源:UCLA Stein Eye Institute imaging database
数据用途:用于红外反射成像中视网膜动脉和静脉的语义分割与定量分析的数据集
任务类型:分割标注
样本数量:46
作者:Hatamizadeh A., Hosseini, H., Patel, N.
论文引用:
[1] Hatamizadeh, A., Hosseini, H., Patel, N., Choi, J., Pole, C., Hoeferlin, C., Schwartz, S. and Terzopoulos, D., 2022. RAVIR: A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance Imaging. IEEE Journal of Biomedical and Health Informatics.
[2] Hatamizadeh, Ali. An Artificial Intelligence Framework for the Automated Segmentation and Quantitative Analysis of Retinal Vasculature. University of California, Los Angeles, 2020.
论文下载:arxiv
数据集下载:grand-challenge, Github
6.5 Cataract-1K 眼科手术视频数据集(2024)
影像类别:手术视频
疾病类型:白内障手术
数据来源:Eye Clinic of Klinikum Klagenfurt
数据用途:用于理解眼科手术流程的大规模视频基准
任务类型:语义分割,视频理解
样本数量:1000
奥地利克拉根福大学眼科诊所
作者:Ghamsarian, N., El-Shabrawi, Y., Nasirihaghighi, S
论文引用:Ghamsarian, N., El-Shabrawi, Y., Nasirihaghighi, S. et al. Cataract-1K Dataset for Deep-Learning-Assisted Analysis of Cataract Surgery Videos. Sci Data 11, 373 (2024). https://doi.org/10.1038/s41597-024-03193-4
论文下载:nature, arxiv
数据集下载:github, selectdataset
OphNet2024 白内障、青光眼和角膜手术 用于理解眼科手术流程的大规模视频基准 手术视频 眼部-手术视频 分类、定位 1969 80 Ming Hu AIM Lab https://github.com/minghu0830/OphNet-benchmark https://arxiv.org/pdf/2406.07471 2024
6.6 OphNet2024 眼科手术视频数据集(2024)
影像类别:手术视频
疾病类型:白内障、青光眼和角膜手术
数据来源:YouTube
数据用途:用于理解眼科手术流程的大规模视频基准
任务类型:语义分割,视频理解
样本数量:2278
作者:Ming Hu, Peng Xia, Lin Wang
论文引用:Hu, M, Xia P, Wang L, et al. (2025). OphNet: A Large-Scale Video Benchmark for Ophthalmic Surgical Workflow Understanding. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15062. Springer, Cham. https://doi.org/10.1007/978-3-031-73235-5_27
论文下载:arxiv
数据集下载:Github
6.7 Harvard-GF 眼底图像数据集(2023)
影像类别:2D-OCT
疾病类型:青光眼
数据用途:用于青光眼检测
任务类型:语义分割,视频理解
样本数量:3300
作者:Luo, Yan ; Tian, Yu ; Shi, Min
论文引用:Luo Yan, Tian Yu, Shi Min, et al., “Harvard Glaucoma Fairness: A Retinal Nerve Disease Dataset for Fairness Learning and Fair Identity Normalization,” in IEEE Transactions on Medical Imaging, vol. 43, no. 7, pp. 2623-2633, July 2024, doi: 10.1109/TMI.2024.3377552.
论文链接:arxiv
代码地址:github
数据集网站:harvard-gf3300
数据集下载链接: google
6.8 SynFundus-1M 合成眼底图像数据集(2023)
SynFundus-Generator是一个由变分自编码器(Variational auto-encoder, VAE)和扩散模型(Diffusion model)组成的生成模型,用于生成合成的眼底图像。
影像类别:合成的眼底图像
疾病类型:11种疾病类型和4种类型的质量评分标注
数据用途:用于生成合成的眼底图像,帮助提升诊断模型的性能
任务类型:图像生成
样本数量:1M
作者:Fangxin Shang and Jie Fu and Yehui Yang and Haifeng Huang and Junwei Liu and Lei Ma
论文引用:Shang F, Fu J, Yang Y, et al. SynFundus: A synthetic fundus images dataset with millions of samples and multi-disease annotations, 2023, https://arxiv.org/abs/2312.00377
论文链接:arxiv
数据集下载:github
代码下载:github
特别说明:SynFundus-1M 数据集中包含了以下11种眼底疾病的标注:糖尿病视网膜病变(Diabetic Retinopathy, DR),年龄相关性黄斑变性(Age-related Macular Degeneration, AMD),视神经异常(Anomalies of the Optic Nerve, AON),脉络膜视网膜病变(Choroidal Retinal Pathology, CRP),变性近视(Degenerative Myopia, DM),糖尿病性黄斑水肿(Diabetic Macular Edema, DME),黄斑前膜(Epimacular Membrane, EM),青光眼(Glaucoma, GC),高血压视网膜病变(Hypertensive Retinopathy, HtR),病理性近视(Pathological Myopia, PM),视网膜静脉阻塞(Retinal Vein Occlusion, RVO),
6.9 RETFound 视网膜基础模型(2023)
RETFound作为一种基于自监督学习(SSL)的基础模型,通过在大规模未标注的视网膜图像上训练,学习到了通用的表示。这种模型可以有效适配到多种疾病检测任务上。
影像类别:CFP,OCT
数据来源:MEH-MIDAS,Kaggle EyePACS,Kermany, D. S
数据用途:用于生成合成的眼底图像,帮助提升诊断模型的性能
样本数量:904170 CFP+736442 OCT
作者:Zhou, Y., Chia, M.A., Wagner, S.K. et al
论文引用:Zhou, Y., Chia, M.A., Wagner, S.K. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023). https://doi.org/10.1038/s41586-023-06555-x
版权声明:
youcans@xidian 作品,转载必须标注原文链接:
【医学影像AI】50个眼科影像数据集(3)其它任务
Copyright 2025 youcans, XIDIAN
Crated:2025-02