【医学影像AI】50个眼科影像数据集(3)其它任务

【医学影像】50个眼科影像数据集(1)分类任务
【医学影像】50个眼科影像数据集(2)分割任务
【医学影像】50个眼科影像数据集(3)其它任务


医学影像已经成为诊断疾病、制定治疗方案和监测病情的重要工具。医疗数据的获取,通常面对隐私、伦理等方面的限制。影像数据的稀缺性,尤其是在罕见疾病、特定人群或新兴成像技术中的数据不足,是人工智能(AI)技术研究和发展的主要挑战。此外,由于对专业知识和对经验的要求,医疗数据的标注通常要由专职医生完成。

作者整理了 50 个眼科影像开源 AI 数据集,介绍这些眼科影像数据集的基本信息和下载地址。上两篇介绍了分类任务和分割任务数据集,本文介绍用于其它任务的数据集。


6. 其它任务:眼底疾病

6.1 RETOUCH 眼底疾病分类数据集(2019)

影像类别:3D-OCT
检测部位:眼部-眼底
疾病类型:黄斑水肿
数据来源:Medical University of Vienna, Erasmus University Medical Center
数据用途:用于自动检测和分割视网膜不同类型液体

任务类型:分类,分割
样本数量:112
分类类别:3(视网膜内液 (IRF)、视网膜下液(SRF)和色素上皮脱离 (PED) )

作者:Bogunović H, Venhuizen F, Klimscha S
论文引用:Bogunović H, Venhuizen F, Klimscha S, et al. RETOUCH: The retinal OCT fluid detection and segmentation benchmark and challenge[J]. IEEE transactions on medical imaging, 2019, 38(8): 1858-1874.
论文下载:RETOUCH
数据集下载:grand-challenge

在这里插入图片描述


6.2 OCTA-500 眼底疾病分类数据集(2020)

影像类别:3D-OCT, 3D-OCTA
检测部位:眼部-眼底
疾病类型:黄斑水肿
数据来源:江苏省人民医院(Jiangsu Province Hospital )
数据用途:提供多模态的图像和注释、文本标签和分割标签

任务类型:分割
样本数量:500

作者:Mingchao Li, Kun Huang, Qiuzhuo Xu, Jiadong Yang, Yuhan Zhang, Zexuan Ji, Keren Xie, Songtao Yuan, Qinghuai Liu, and Qiang Chen
论文引用:Li M, Huang K, Xu Q, Yang J, Chen Q. et al., OCTA-500: A retinal dataset for optical coherence tomography angiography study. Med Image Anal. 2024 Apr;93:103092. doi: 10.1016/j.media.2024.103092.
论文下载:arxiv
数据集下载:ieee-dataport
github-chaosallen

在这里插入图片描述

在这里插入图片描述


6.3 OLIVES 糖尿病语义数据集(2022)

影像类别:多模态和时间序列:OCT/Fundus/Clinical/Biomarker
检测部位:眼部-眼底
疾病类型:糖尿病视网膜病变(DR)、糖尿病黄斑水肿(DME)
数据来源:Retina Consultants of Texas (Houston, TX, USA).
数据用途:为研究视觉眼部语义的眼科标签数据集

任务类型:分类
样本数量:1268
分类类别:多种方式

作者:M. Prabhushankar, K. Kokilepersaud, Y. Logan
论文引用:M. Prabhushankar, K. Kokilepersaud, Y. Logan, et al., “OLIVES Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics”, Advances in Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks, 2022
论文下载:neurips-OLIVES, arxiv-OLIVES
数据集下载:Github-olivesgatech, zenodo OLIVES, huggingface OLIVES

在这里插入图片描述


6.4 RAVIR 眼科手术视频数据集(2022)

影像类别:红外扫描激光检眼镜
检测部位:
疾病类型:
数据来源:UCLA Stein Eye Institute imaging database
数据用途:用于红外反射成像中视网膜动脉和静脉的语义分割与定量分析的数据集

任务类型:分割标注
样本数量:46

作者:Hatamizadeh A., Hosseini, H., Patel, N.
论文引用:
[1] Hatamizadeh, A., Hosseini, H., Patel, N., Choi, J., Pole, C., Hoeferlin, C., Schwartz, S. and Terzopoulos, D., 2022. RAVIR: A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance Imaging. IEEE Journal of Biomedical and Health Informatics.
[2] Hatamizadeh, Ali. An Artificial Intelligence Framework for the Automated Segmentation and Quantitative Analysis of Retinal Vasculature. University of California, Los Angeles, 2020.
论文下载:arxiv
数据集下载:grand-challenge, Github

在这里插入图片描述


6.5 Cataract-1K 眼科手术视频数据集(2024)

影像类别:手术视频
疾病类型:白内障手术
数据来源:Eye Clinic of Klinikum Klagenfurt
数据用途:用于理解眼科手术流程的大规模视频基准

任务类型:语义分割,视频理解
样本数量:1000
奥地利克拉根福大学眼科诊所

作者:Ghamsarian, N., El-Shabrawi, Y., Nasirihaghighi, S
论文引用:Ghamsarian, N., El-Shabrawi, Y., Nasirihaghighi, S. et al. Cataract-1K Dataset for Deep-Learning-Assisted Analysis of Cataract Surgery Videos. Sci Data 11, 373 (2024). https://doi.org/10.1038/s41597-024-03193-4
论文下载:nature, arxiv
数据集下载:github, selectdataset

OphNet2024 白内障、青光眼和角膜手术 用于理解眼科手术流程的大规模视频基准 手术视频 眼部-手术视频 分类、定位 1969 80 Ming Hu AIM Lab https://github.com/minghu0830/OphNet-benchmark https://arxiv.org/pdf/2406.07471 2024

在这里插入图片描述


6.6 OphNet2024 眼科手术视频数据集(2024)

影像类别:手术视频
疾病类型:白内障、青光眼和角膜手术
数据来源:YouTube
数据用途:用于理解眼科手术流程的大规模视频基准

任务类型:语义分割,视频理解
样本数量:2278

作者:Ming Hu, Peng Xia, Lin Wang
论文引用:Hu, M, Xia P, Wang L, et al. (2025). OphNet: A Large-Scale Video Benchmark for Ophthalmic Surgical Workflow Understanding. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15062. Springer, Cham. https://doi.org/10.1007/978-3-031-73235-5_27
论文下载:arxiv
数据集下载:Github

在这里插入图片描述


6.7 Harvard-GF 眼底图像数据集(2023)

影像类别:2D-OCT
疾病类型:青光眼
数据用途:用于青光眼检测

任务类型:语义分割,视频理解
样本数量:3300

作者:Luo, Yan ; Tian, Yu ; Shi, Min
论文引用:Luo Yan, Tian Yu, Shi Min, et al., “Harvard Glaucoma Fairness: A Retinal Nerve Disease Dataset for Fairness Learning and Fair Identity Normalization,” in IEEE Transactions on Medical Imaging, vol. 43, no. 7, pp. 2623-2633, July 2024, doi: 10.1109/TMI.2024.3377552.
论文链接:arxiv
代码地址:github
数据集网站:harvard-gf3300
数据集下载链接: google

在这里插入图片描述


6.8 SynFundus-1M 合成眼底图像数据集(2023)

SynFundus-Generator是一个由变分自编码器(Variational auto-encoder, VAE)和扩散模型(Diffusion model)组成的生成模型,用于生成合成的眼底图像。

影像类别:合成的眼底图像
疾病类型:11种疾病类型和4种类型的质量评分标注
数据用途:用于生成合成的眼底图像,帮助提升诊断模型的性能

任务类型:图像生成
样本数量:1M

作者:Fangxin Shang and Jie Fu and Yehui Yang and Haifeng Huang and Junwei Liu and Lei Ma
论文引用:Shang F, Fu J, Yang Y, et al. SynFundus: A synthetic fundus images dataset with millions of samples and multi-disease annotations, 2023, https://arxiv.org/abs/2312.00377
论文链接:arxiv
数据集下载:github
代码下载:github

特别说明:SynFundus-1M 数据集中包含了以下11种眼底疾病的标注:糖尿病视网膜病变(Diabetic Retinopathy, DR),年龄相关性黄斑变性(Age-related Macular Degeneration, AMD),视神经异常(Anomalies of the Optic Nerve, AON),脉络膜视网膜病变(Choroidal Retinal Pathology, CRP),变性近视(Degenerative Myopia, DM),糖尿病性黄斑水肿(Diabetic Macular Edema, DME),黄斑前膜(Epimacular Membrane, EM),青光眼(Glaucoma, GC),高血压视网膜病变(Hypertensive Retinopathy, HtR),病理性近视(Pathological Myopia, PM),视网膜静脉阻塞(Retinal Vein Occlusion, RVO),

在这里插入图片描述


6.9 RETFound 视网膜基础模型(2023)

RETFound作为一种基于自监督学习(SSL)的基础模型,通过在大规模未标注的视网膜图像上训练,学习到了通用的表示。这种模型可以有效适配到多种疾病检测任务上。

影像类别:CFP,OCT
数据来源:MEH-MIDAS,Kaggle EyePACS,Kermany, D. S
数据用途:用于生成合成的眼底图像,帮助提升诊断模型的性能
样本数量:904170 CFP+736442 OCT

作者:Zhou, Y., Chia, M.A., Wagner, S.K. et al
论文引用:Zhou, Y., Chia, M.A., Wagner, S.K. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023). https://doi.org/10.1038/s41586-023-06555-x

论文链接:nature
数据集下载:github

在这里插入图片描述

版权声明:
youcans@xidian 作品,转载必须标注原文链接:
【医学影像AI】50个眼科影像数据集(3)其它任务
Copyright 2025 youcans, XIDIAN
Crated:2025-02


[编辑本段]Turbo C2.0    介绍      Turbo C2.0不仅是一个快捷、高效的编译程序,同时还有一个易学、易用的集成开发环境。使用Turbo C2.0无需独立地编辑、编译和连接程序,就能建立并运行C语言程序。因为这些功能都组合在Turbo 2.0的集成开发环境内,并且可以通过一个简单的主屏幕使用这些功能。    基本配置要求   Turbo C 2.0可运行于IBM-PC系列微机,包括XT,AT及IBM 兼容机。此时要求DOS2.0或更高版本支持,并至少需要448K的RAM,可在任何彩、单色80列监视器上运行。支持数学协处理器芯片,也可进行浮点仿真,这将加快程序的执行。 [编辑本段]Turbo C 2.0的主要文件的简单介绍   INSTALL.EXE 安装程序文件   TC.EXE 集成编译   TCINST.EXE 集成开发环境的配置设置程序   TCHELP.TCH 帮助文件   THELP.COM 读取TCHELP.TCH的驻留程序README 关于Turbo C的信息文件   TCCONFIG.EXE 配置文件转换程序MAKE.EXE   项目管理工具TCC.EXE   命令行编译TLINK.EXE   Turbo C系列连接器TLIB.EXE   Turbo C系列库管理工具C0?.OBJ 不   同模式启动代码C?.LIB   不同模式运行库GRAPHICS.LIB   图形库EMU.LIB   8087仿真库FP87.LIB 8087库   *.H Turbo C头文件   *.BGI 不同显示器图形驱动程序   *.C Turbo C例行程序(源文件)   其中:上面的?分别为:T Tiny(微型模式)S Small(小模式)C Compact(紧凑模式)M Medium(中型模式)L Large(大模式)H Huge(巨大模式)    Turbo C++ 3.0   “Turbo C++ 3.0”软件是Borland公司在1992年推出的强大的——C语言程序设计与C++面向对象程序设计 的集成开发工具。它只需要修改一个设置选项,就能够在同一个IDE集成开发环境下设计和编译以标准 C 和 C++ 语法设计的程序文件。 [编辑本段]C 语言   C语言起始于1968年发表的CPL语言,它的许多重要思想都来自于Martin Richards在1969年研制的BCPL语言,以及以BCPL语言为基础的与Ken Thompson在1970年研制的B语言。Ken Thompson用B语言写了第一个UNIX操作系统。M.M.Ritchie1972年在B语言的基础上研制了C语言,并用C语言写成了第一个在PDP-11计算机上研制的UNIX操作系统。1977年出现了独立于极其的C语言编译文本《看移植C语言编译程序》,从而大大简化了把C语言编译程序移植到新环境中所做的工作,这本身也就使UNIX的日益广泛使用,C语言也迅速得到推广。   1983年美国国家标准化协会(ANSI)根据C语言问世以来的各种版本,对C语言的发展和扩充制定了新的标准,成为ANSI C。1987年ANSI又公布了新标准————87ANSI C。   目前在微型计算机上使用的有Microsoft C、Quick C、Turbo C等多种版本。这些不同的C语言版本,基本部分是相同的,但是在有关规定上有略有差异。   C 语言发展如此迅速, 而且成为最受欢迎的语言之一, 主要因为它具有强大的功能。许多著名的系统软件, 如DBASE Ⅲ PLUS、DBASE Ⅳ 都是由C 语言编写的。用C 语言加上一些汇编语言子程序, 就更能显示C 语言的优势了,象PC- DOS ,WORDSTAR等就是用这种方法编写的。归纳起来C 语言具有下列特点:   1. C是中级语言   它把高级语言的基本结构和语句与低级语言的实用性结合起来。C 语言可以象汇编语言一样对位、字节和地址进行操作, 而这三者是计算机最基本的工作单元。   2. C是结构式语言   结构式语言的显著特点是代码及数据的分隔化, 即程序的各个部分除了必要的信息交流外彼此独立。这种结构化方式可使程序层次清晰, 便于使用、维护以及调试。C 语言是以函数形式提供给用户的, 这些函数可方便的调用, 并具有多种循环、条件语句控制程序流向, 从而使程序完全结构化。   3. C语言功能齐全   C 语言具有各种各样的数据类型, 并引入了指针概念, 可使程序效率更高。另外C 语言也具有强大的图形功能, 支持多种显示器和驱动器。而且计算功能、逻辑判断功能也比较强大, 可以实现决策目的。   4. C语言适用范围大   C 语言还有一个突出的优点就是适合于多种操作系统, 如DOS、UNIX,也适用于多种机型。   C语言的优点很多,但是也存在一些缺点,如运算优先级太多,运算能力方面不像其它高级语言那样强,语法定义不严格等。但是这些都不能阻止C语言成为一门广受欢迎的计算机编程语言
Turbo C2.0 介绍   Turbo C2.0不仅是一个快捷、高效的编译程序,同时还有一个易学、易用的集成开发环境。使用Turbo C2.0无需独立地编辑、编译和连接程序,就能建立并运行C语言程序。因为这些功能都组合在Turbo 2.0的集成开发环境内,并且可以通过一个简单的主屏幕使用这些功能。 基本配置要求   Turbo C 2.0可运行于IBM-PC系列微机,包括XT,AT及IBM 兼容机。此时要求DOS2.0或更高版本支持,并至少需要448K的RAM,可在任何彩、单色80列监视器上运行。支持数学协处理器芯片,也可进行浮点仿真,这将加快程序的执行。 主要文件的简单介绍   INSTALL.EXE 安装程序文件   TC.EXE 集成编译   TCINST.EXE 集成开发环境的配置设置程序   TCHELP.TCH 帮助文件   THELP.COM 读取TCHELP.TCH的驻留程序README 关于Turbo C的信息文件   TCCONFIG.EXE 配置文件转换程序MAKE.EXE   项目管理工具TCC.EXE   命令行编译TLINK.EXE   Turbo C系列连接器TLIB.EXE   Turbo C系列库管理工具C0?.OBJ 不   同模式启动代码C?.LIB   不同模式运行库GRAPHICS.LIB   图形库EMU.LIB   8087仿真库FP87.LIB 8087库   *.H Turbo C头文件   *.BGI 不同显示器图形驱动程序   *.C Turbo C例行程序(源文件)   其中:上面的?分别为:T Tiny(微型模式)S Small(小模式)C Compact(紧凑模式)M Medium(中型模式)L Large(大模式)H Huge(巨大模式)
### 回答1: 在 TURBO C 2.0 中,您可以使用 biosdisk() 函数来格式化软盘。 下面是一段代码示例: ``` #include <stdio.h> #include <dos.h> int main() { // 定义扇区的大小 unsigned int sector_size[3] = {512, 512, 1024}; // 定义填充字节 unsigned char fill_char[3] = {0xF6, 0xF6, 0x48}; // 格式化磁道 700 的前三个扇区 for (int i = 0; i < 3; i++) { int result = biosdisk(2, 0, 70, 0, i + 1, 1, sector_size[i], fill_char[i]); if (result != 0) { printf("格式化扇区 %d 失败,返回码: %d\n", i + 1, result); } } return 0; } ``` 请注意,在使用 biosdisk() 函数之前,需要包含 dos.h 头文件。 希望这能帮到您! ### 回答2使用TURBO C 2.0语言,可以通过以下代码格式化软盘的70磁道0面,并分别格式化3个扇区,大小分别为512字节、512字节和1024字节。其中,前两个扇区使用F6填充,第三个扇区使用48填充。 ```c #include<stdlib.h> #include<stdio.h> #include<dos.h> void formatFloppyDisk(){ union REGS regs; regs.h.ah = 0x0;// To format a floppy disk, we set AH=0 regs.h.dl = 0;// Drive number (0=A, 1=B, etc.) regs.x.cx = 0;// Track number to format regs.h.dh = 0;// Head number regs.h.al = 0;// Sector size (0=default, 1=512 bytes, 2=1024 bytes, 3=2048 bytes etc.) int FILL_BYTE = 0;// The byte value to fill the sectors with during formatting int NUM_SECTORS = 3;// Number of sectors to format // To format 70th track 0th head regs.x.ax = 0x1301; // 0x13 = Reset disk system, 01H = Reset only specified drive int86(0x13, &regs, &regs); // BIOS interrupt to reset disk system for (int i=0; i<NUM_SECTORS; i++){ regs.x.ax = 0x3101; // 0x31 = Write Format, 01H = Format only current track regs.x.bx = 0x0001; // 0x00 = Drive A:, 01H = Head 1, 0 = Generate ID Field depending on the disk in the drive 1 = Keep the ID Field all zeros regs.x.cx = 0x0170; // Track number=70(0-79 range) regs.h.dh = 0x00; // Head number=0 or 1 regs.h.al = 0x02; // Control byte=always zero regs.x.dx = i+1; // Sector number starting from 1 regs.x.si = 0x0000; // segment and offset of read/write buffer regs.x.di = 0x0000; // segment and offset of result if(i == 2){ FILL_BYTE = 0x48; // Fill the third sector with 48 regs.x.ax = 0x3102; // 0x31 = Write Format, 02H = Format sequential tracks immediately following the one being formatted }else{ FILL_BYTE = 0xF6; // Fill the first two sectors with F6 } regs.h.ah = FILL_BYTE; // Fill the sector with specified byte int86(0x13, &regs, &regs); // BIOS interrupt to format the specified sector } } int main(){ formatFloppyDisk(); return 0; } ``` 上述代码使用了INT 0x13,即BIOS中断服务例程,来执行软盘格式化操作。通过设置寄存器的不同参数,可以指定要格式化的磁道、面、扇区大小和填充字节。在这个例子中,我们格式化了软盘70磁道0面的3个扇区,前两个扇区使用F6填充,第三个扇区使用48填充。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youcans_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值