目录
1 MapReduce 跑的慢的原因
MapReduce 程序效率的瓶颈在于两点:
1、计算机性能
CPU、内存、磁盘健康、网络
2、I/O 操作优化
(1)数据倾斜
(2)Map和Reduce数设置不合理
(3)Map运行时间太长,导致Reduce等待过久
(4)小文件过多
(5)大量的不可分块的超大文件
(6)Spill次数过多
(7)Merge次数过多等
2 MapReduce 优化方法
MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段、Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。
2.1 数据输入
(1)合并小文件:在执行MR任务前将小文件进行合并,大量的小文件会产生大量的Map任务,增大Map任务装载次数,而任务的装载比较耗时,从而导致MR运行较慢。
(2)采用CombineTextInputFormat来作为输入,解决输入端大量小文件场景。
2.2 Map阶段
(1)减少溢写(Spill)次数:通过调整io.sort.mb 及 sort.spill.percent 参数值,增大触发Spill的内存上限,减少Spill次数,从而减少磁盘IO。
(2)减少合并(Merge)次数:通过调整io.sort.factor 参数,增大Merge的文件数目,减少Merge的次数,从而缩短MR处理时间。
(3)在Map之后,不影响业务逻辑前提下,先进行Combine处理,减少I/O。
2.3 Reduce阶段
(1)合理设置Map和Reduce数:两个都不能设置太少,也不能设置太多。太少,会导致Task等待,延长处理时间;太多,会导致Map、Reduce任务间竞争资源,造成处理超时等错误。
(2)设置Map、Reduce共存:调整slowstart.completedmaps参数,使Map运行到一定程度后,Reduce也开始运行,减少Reduce的等待时间。
(3)规避使用Reduce:因为Reduce在用于连接数据集的时候会产生大量的网络消耗。
(4)合理设置Reduce端的Buffer:默认情况下,数据达到一个阈值的时候,Buffer中的数据就会写入磁盘,然后Reduce会从磁盘中获得所有的数据。也就是说,Buffer和Reduce是没有直接关联的,中间多次写磁盘->读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得Buffer中的一部分数据可以直接输送到Reduce,从而减少IO开销:mapreduce.reduce.input.buffer.percent,默认为0.0。当值大于0的时候,会保留指定比例的内存读Buffer中的数据直接拿给Reduce使用,这样一来,设置Buffer需要内存,读取数据需要内存,Reduce计算也要内存,所以要根据作业的运行情况进行调整。
2.4 I/O 传输
(1)采用数据压缩的方式,减少网络IO的时间,安装Snappy和LZO压缩编码器。
(2)使用SequenceFile二进制文件。
2.5 数据倾斜问题
(1)数据倾斜现象
数据频率倾斜——某一个区域的数据量要远远大于其他区域。
数据大小倾斜——部分记录的大小远远大于平均值。
(2)减少数据倾斜的方法
方法1:抽样和范围分区
可以通过对原始数据进行抽样得到的结果集来预设分区边界值。
方法2:自定义分区
基于输出键的背景只是进行自定义分区。例如,如果Map输出键的单词来源于一本书。且其中某个专业词汇较多。那么就可以自定义分区将这些专业词汇发送给固定的一部分Reduce实例。而将其他的都发送给剩余 的Reduce实例。
方法3:Combine
使用Combine可以大量地减小数据倾斜。在可能的情况下,Combine的目的就是聚合并精简数据。
方法4:采用Map Join,尽量避免Reduce Join
2.6 常用的调优参数
1、资源相关参数
(1)以下参数是在用户自己的MR应用程序中配置就可以生效(mapred-default.xml)
配置参数 | 参数说明 |
mapreduce.map.memory.mb | 一个MapTask可使用的资源上限(单位:MB),默认为1024。如果MapTask实际使用的资源量超过该值,则会被强制杀死。 |
mapreduce.reduce.memory.mb | 一个ReduceTask可使用的资源上限(单位:MB),默认为1024。如果ReduceTask实际使用的资源量超过该值,则会被强制杀死。 |
mapreduce.map.cpu.vcores | 每个MapTask可使用的最多cpu core数目,默认值: 1 |
mapreduce.reduce.cpu.vcores | 每个ReduceTask可使用的最多cpu core数目,默认值: 1 |
mapreduce.reduce.shuffle.parallelcopies | 每个Reduce去Map中取数据的并行数。默认值是5 |
mapreduce.reduce.shuffle.merge.percent | Buffer中的数据达到多少比例开始写入磁盘。默认值0.66 |
mapreduce.reduce.shuffle.input.buffer.percent | Buffer大小占Reduce可用内存的比例。默认值0.7 |
mapreduce.reduce.input.buffer.percent | 指定多少比例的内存用来存放Buffer中的数据,默认值是0.0 |
(2)应该在YARN启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)
配置参数 | 参数说明 |
yarn.scheduler.minimum-allocation-mb | 给应用程序Container分配的最小内存,默认值:1024 |
yarn.scheduler.maximum-allocation-mb | 给应用程序Container分配的最大内存,默认值:8192 |
yarn.scheduler.minimum-allocation-vcores | 每个Container申请的最小CPU核数,默认值:1 |
yarn.scheduler.maximum-allocation-vcores | 每个Container申请的最大CPU核数,默认值:32 |
yarn.nodemanager.resource.memory-mb | 给Containers分配的最大物理内存,默认值:8192 |
(3)Shuffle性能优化的关键参数,应在YARN启动之前就配置好(mapred-default.xml)
配置参数 | 参数说明 |
mapreduce.task.io.sort.mb | Shuffle的环形缓冲区大小,默认100m |
mapreduce.map.sort.spill.percent | 环形缓冲区溢出的阈值,默认80% |
2、容错相关参数(MapReduce 性能优化)
配置参数 | 参数说明 |
mapreduce.map.maxattempts | 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。 |
mapreduce.reduce.maxattempts | 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。 |
mapreduce.task.timeout | Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个Task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该Task处于Block状态,可能是卡住了,也许永远会卡住,为了防止因为用户程序永远Block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。 |
3 HDFS 小文件优化方法
3.1 HDFS 小文件弊端
HDFS上每个文件都要在NameNode上建立一个索引,这个索引的大小约为150byte,这样当小文件比较多的时候,就会产生很多的索引文件,一方面会大量占用NameNode的内存空间,另一方面就是索引文件过大使得索引速度变慢。
3.2 HDFS 小文件解决方案
小文件的优化无非以下几种方式:
(1)在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS。
(2)在业务处理之前,在HDFS上使用MapReduce程序对小文件进行合并。
(3)在MapReduce处理时,可采用CombineTextInputFormat提高效率。