[bzoj1068][SCOI2007]压缩 区间dp

本文介绍了一种字符串压缩算法,该算法通过使用特定符号标记重复序列实现字符串的有效压缩。文章提供了详细的算法实现过程,并通过示例说明了如何进行压缩及解压缩操作。

1068: [SCOI2007]压缩

Time Limit: 1 Sec   Memory Limit: 128 MB
[ Submit][ Status][ Discuss]

Description

  给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息。压缩后的字符串除了小
写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上一个M(如果当前位置左边没
有M,则从串的开始算起)开始的解压结果(称为缓冲串)。 bcdcdcdcd可以压缩为bMcdRR,下面是解压缩的过程

 

  另一个例子是abcabcdabcabcdxyxyz可以被压缩为abcRdRMxyRz。

Input

  输入仅一行,包含待压缩字符串,仅包含小写字母,长度为n。

Output

  输出仅一行,即压缩后字符串的最短长度。

Sample Input

bcdcdcdcdxcdcdcdcd

Sample Output

12

HINT

在第一个例子中,解为aaaRa,在第二个例子中,解为bMcdRRxMcdRR。 

【限制】 

100%的数据满足:1<=n<=50 100%的数据满足:1<=n<=50

Source

f[i][j][1/0]表示i到j位中间有无M(因为没有M才能有R)
#include <bits/stdc++.h>
using namespace std;
const int N = 55;
int f[N][N][2],n; char s[N];
/*
f[i][j][0] = j - i + 1
f[i][j][0] = min( f[i][k][0]+r-k )
f[i][j][1] = min( f[i][k][1], f[i][k][0] ) + 1
*/
bool check( int l, int r ){
	int mid = l + r >> 1;
	for( int i = l; i <= mid; i++ ) if( s[i] != s[mid-l+1+i] ) return 0;
	return 1;
}
int main(){
	scanf( "%s", s + 1 ); n = strlen( s + 1 );
	for( int i = n; i >= 1; i-- )
		for( int j = i; j <= n; j++ ){
			f[i][j][0] = f[i][j][1] = j - i + 1;
			for( int k = i; k < j; k++ ) f[i][j][0] = min( f[i][j][0], f[i][k][0] + j - k );
			for( int k = i; k < j; k++ ) f[i][j][1] = min( f[i][j][1],
			min( f[i][k][0], f[i][k][1] ) + 1 + min( f[k+1][j][0], f[k+1][j][1] ) );
			if( ( j - i + 1 ) % 2 == 0 && check( i, j ) ) f[i][j][0] = f[i][i+j>>1][0] + 1;
		}
	printf( "%d\n", min( f[1][n][1], f[1][n][0] ) );
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值