GBDT+LR

转自:https://www.deeplearn.me/1797.htmlhttps://cloud.tencent.com/developer/news/14063

GBDT+LR 的特征组合方案是工业界经常使用的组合,尤其是计算广告 CTR 中应用比较广泛,方案的提出者是 Facebook 2014 的一篇论文。

相关的开发工具包,sklearn 和 xgboost(ps:xgboost 是一个大杀器,并且支持 hadoop 分布式,你可以部署实现分布式操作,博主部署过,布置过程较为负责,尤其是环境变量的各种设置)


特征决定模型性能上界,例如深度学习方法也是将数据如何更好的表达为特征。如果能够将数据表达成为线性可分的数据,那么使用简单的线性模型就可以取得很好的效果。GBDT 构建新的特征也是使特征更好地表达数据。

主要参考 Facebook[1],原文提升效果:

在预测 Facebook 广告点击中,使用一种将决策树与逻辑回归结合在一起的模型,其优于其他方法,超过 3%。

主要思想:GBDT 每棵树的路径直接作为 LR 输入特征使用。

用已有特征训练 GBDT 模型,然后利用 GBDT 模型学习到的树来构造新特征,最后把这些新特征加入原有特征一起训练模型。构造的新特征向量是取值 0/1 的,向量的每个元素对应于 GBDT 模型中树的叶子结点。当一个样本点通过某棵树最终落在这棵树的一个叶子结点上,那么在新特征向量中这个叶子结点对应的元素值为 1,而这棵树的其他叶子结点对应的元素值为 0。新特征向量的长度等于 GBDT 模型里所有树包含的叶子结点数之和。

上图为混合模型结构。输入特征通过增强的决策树进行转换。 每个单独树的输出被视为稀疏线性分类器的分类输入特征。 增强的决策树被证明是非常强大的特征转换。

例子 1:上图有两棵树,左树有三个叶子节点,右树有两个叶子节点,最终的特征即为五维的向量。对于输入 x,假设他落在左树第一个节点,编码[1,0,0],落在右树第二个节点则编码[0,1],所以整体的编码为[1,0,0,0,1],这类编码作为特征,输入到线性分类模型(LR or FM)中进行分类。

需要注意的是在 sklearn 或者 xgboost 输出的结果都是叶子节点的 index,所以需要自己动手去做 onehot 编码,然后交给 lr 训练,onehot 你可以在 sklearn 的预处理包中调用即可

论文中 GBDT 的参数,树的数量最多 500 颗(500 以上就没有提升了),每棵树的节点不多于 12

LR模型有以下特点:

  • 计算复杂度低;
  • 易于并行化处理;
  • 易于得到离散化目标值0或1,利用sigmoid函数将传统线性模型的输出值映射到(0,1)区间;
  • 学习能力限于线性特征,需要提前进行大量的特征工程得到有效的特征及特征组合。

输入LR模型的特征很重要,但是特征组合不能直接通过特征笛卡尔积获取,只能依靠人工经验。故而如何自动化进行特征工程,规范化LR模型使用流程是一个值得研究的问题。

GBDT作为一种常用的树模型,可天然地对原始特征进行特征划分、特征组合和特征选择,并得到高阶特征属性和非线性映射。从而可将GBDT模型抽象为一个特征处理器,通过GBDT分析原始特征获取到更利于LR分析的新特征。这也正是GBDT+LR模型的核心思想——利用GBDT构造的新特征来训练LR模型。

1)为什么要使用集成的决策树模型,而不是单棵的决策树模型:一棵树的表达能力很弱,不足以表达多个有区分性的特征组合,多棵树的表达能力更强一些。可以更好的发现有效的特征和特征组合

2)为什么建树采用GBDT而非RF:RF也是多棵树,但从效果上有实践证明不如GBDT。且GBDT前面的树,特征分裂主要体现对多数样本有区分度的特征;后面的树,主要体现的是经过前N颗树,残差仍然较大的少数样本。优先选用在整体上有区分度的特征,再选用针对少数样本有区分度的特征,思路更加合理,这应该也是用GBDT的原因。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值