激活函数以0为中心的好处

激活函数讲解:https://www.jiqizhixin.com/articles/2019-10-23

今天在讨论神经网络中的激活函数时,陆同学提出 Sigmoid 函数的输出不是以零为中心的(non-zero-centered),这会导致神经网络收敛较慢。关于这一点,过去我只是将其记下,却并未理解背后的原因。此篇谈谈背后的原因。

神经元

 

如图是神经网络中一个典型的神经元设计,它完全仿照人类大脑中神经元之间传递数据的模式设计。大脑中,神经元通过若干树突(dendrite)的突触(synapse),接受其他神经元的轴突(axon)或树突传递来的消息,而后经过处理再由轴突输出。

在这里,诸 xi 是其他神经元的轴突传来的消息,诸 wi 是突触对消息的影响,诸 wixi 则是神经元树突上传递的消息。这些消息经由神经元整合后(z(x→;w→,b)=∑iwixi+b)再激活输出(f(z))。这里,整合的过程是线性加权的过程,各输入特征 xi 之间没有相互作用。激活函数(active function)一般来说则是非线性的,各输入特征 xi 在此处相互作用。

Sigmoid 与 tanh

此篇集中讨论激活函数输出是否以零为中心的问题,因而不对激活函数做过多的介绍,而只讨论 Sigmoid 与 tanh 两个激活函数。

Sigmoid 函数

Sigmoid 函数的一般形式是

\sigma(x; a) = \frac{1}{1 + \mathrm{e}^{-ax}}.

这里,参数 a 控制 Sigmoid 函数的形状,对函数基本性质没有太大的影响。在神经网络中,一般设置 a=1,直接省略。

Sigmoid 函数的导数很好求   σ′(x)=σ(x)(1−σ(x)).

 

tanh 函数

tanh 函数全称 Hyperbolic Tangent,即双曲正切函数。它的表达式是

\tanh(x) = 2\sigma(2x) - 1 = \frac{\mathrm{e}^{x} - \mathrm{e}^{-x}}{\mathrm{e}^{x} + \mathrm{e}^{-x}}.

双曲正切函数的导数也很好求

\tanh'(x) = 1 - \tanh^2(x).

 

一些性质

Sigmoid 和 tanh 两个函数非常相似,具有不少相同的性质。简单罗列如下

  • 优点:平滑
  • 优点:易于求导
  • 缺点:幂运算相对耗时
  • 缺点:导数值小于 1,反向传播易导致梯度消失(Gradient Vanishing)

对于 Sigmoid 函数来说,它的值域是 (0,1),因此又有如下特点

  • 优点:可以作为概率,辅助模型解释
  • 缺点:输出值不以零为中心,可能导致模型收敛速度慢

此篇重点讲 Sigmoid 函数输出值不以零为中心的这一缺点。

收敛速度

这里首先需要给收敛速度做一个诠释。模型的最优解即是模型参数的最优解。通过逐轮迭代,模型参数会被更新到接近其最优解。这一过程中,迭代轮次多,则我们说模型收敛速度慢;反之,迭代轮次少,则我们说模型收敛速度快。

参数更新

深度学习一般的学习方法是反向传播。简单来说,就是通过链式法则,求解全局损失函数 L(x→) 对某一参数 w 的偏导数(梯度);而后辅以学习率 η,向梯度的反方向更新参数 w。

w \gets w - \eta\cdot\frac{\partial L}{\partial w}.

考虑学习率 η 是全局设置的超参数,参数更新的核心步骤即是计算 ∂L∂w。再考虑到对于某个神经元来说,其输入与输出的关系是

f(\vec x; \vec w, b) = f(z) = f\Bigl(\sum_iw_ix_i + b\Bigr).

因此,对于参数 wi 来说,

\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial f}\frac{\partial f}{\partial z}\frac{\partial z}{\partial w_i} = x_i \cdot \frac{\partial L}{\partial f}\frac{\partial f}{\partial z}.

因此,参数的更新步骤变为

w_i \gets w_i - \eta x_i\cdot \frac{\partial L}{\partial f}\frac{\partial f}{\partial z}.

更新方向

由于 wi 是上一轮迭代的结果,此处可视为常数,而 η 是模型超参数,参数 wi 的更新方向实际上由 xi⋅∂L∂f∂f∂z 决定。

又考虑到 ∂L∂f∂f∂z 对于所有的 wi 来说是常数,因此各个 wi 更新方向之间的差异,完全由对应的输入值 xi 的符号决定。

以零为中心的影响

至此,为了描述方便,我们以二维的情况为例。亦即,神经元描述为

f(\vec x; \vec w, b) = f\bigl(w_0x_0 + w_1x_1 + b\bigr).

现在假设,参数 w0, w1 的最优解 w0∗, w1∗ 满足条件

\begin{cases}w_0 < w_0^{*}, \\ w_1\geqslant w_1^{*}.\end{cases}

这也就是说,我们希望 w0 适当增大,但希望 w1 适当减小。考虑到上一小节提到的更新方向的问题,这就必然要求 x0 和 x1 符号相反。

但在 Sigmoid 函数中,输出值恒为正。这也就是说,如果上一级神经元采用 Sigmoid 函数作为激活函数,输入x0和x1的符号相同,那么我们无法做到 x0 和 x1 符号相反。此时,模型为了收敛,不得不向逆风前行的风助力帆船一样,走 Z 字形逼近最优解。(为什么会走z,因为w0和w1的更新方向总是相同,可以理解为每次更新都是同时增大或者同时减少,因此每次迭代的方向都是最新点的第一和第三象限)

如图,模型参数走绿色箭头能够最快收敛,但由于输入值的符号总是为正,所以模型参数可能走类似红色折线的箭头。如此一来,使用 Sigmoid 函数作为激活函数的神经网络,收敛速度就会慢上不少了。

  • 14
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值