问题:当利用LSTM/GRU等做预测时,在数据上升较快或者下降较快的地方出现预测值滞后现象,即T+1时刻的预测值就是或者与T,T-1时刻的真实输入值基本相同 原因:回归算法将使用您提供的时间窗口中的值作为样本,以最大程度地减少误差。假设您正在尝试预测时间t的值。输入是以前的收盘价,即t-20到t-1的最后20个输入的时间序列窗口(假设样本输入的timestamp是20)。回归算法可能会学习在时间t-1或t-2处的值作为预测值,因为这样不需要做什么就可以达到优化的误差之内了。这样想:如果在t-1值 6340,那么预测 t时刻为6340或在t + 1时为6340,从整体来看将最大程度地减小误差(因为误差是预测的很多点的误差进行汇总),但是实际上该算法没有学习任何东西,它只是复制,因此除了完成优化任务外,它基本上什么也不做。 解决方法: 1. 不要给出真实的值,对输入样本进行非线性化的处理,平方,根号,ln等,是不能直接直观地预测其结果,而只是为算法提供模式。 2. 采用多类别分类,可以直接进行二进制分类(我这儿的理解是:采用树模型,xgboost,gbdt)