就在刚刚,Meta 如期发布了 Llama 3.1 模型。
简单来说,超大杯 Llama 3.1 405B 是 Meta 迄今为止最强大的模型,也是全球目前最强大的开源大模型,更是全球最强的大模型。
从今天起,不需要再争论开源大模型与闭源大模型的孰优孰劣,因为 Llama 3.1 405B 用无可辩驳的实力证明路线之争并不影响最终的技术实力。
先给大家总结一下 Llama 3.1 模型的特点:
包含 8B、70B 和 405B 三个尺寸,最大上下文提升到了128K,支持多语言,代码生成性能优秀,具有复杂的推理能力
从基准测试结果来看,Llama 3.1 超过了 GPT-4 0125,与 GPT-4o、Claude 3.5 互有胜负
提供开放/免费的模型权重和代码,许可证允许用户进行微调,将模型蒸馏到其他形式,并支持在任何地方部署
提供 Llama Stack API,便于集成使用,支持协调多个组件,包括调用外部工具
附上模型下载地址:
https://huggingface.co/meta-llama
https://llama.meta.com/
超大杯登顶全球最强大模型,中杯大杯藏惊喜
本次发布的 Llama 3.1 共有 8B、70B 和 405B 三个尺寸版本。
从基准测试结果来看,超大杯 Llama 3.1 405B 全方位碾压了 GPT-3.5 Turbo、大部分基准测试得分超过了 GPT-4 0125。
而面对 OpenAI 此前发布的最强闭源大模型 GPT-4o 和第一梯队的 Claude 3.5 Sonnet,超大杯依然有着一战之力,甚至仅从纸面参数上看,Llama 3.1 405B 标志开源大模型首次追上了闭源大模型。
细分到基准测试结果,Llama 3.1 405B 在 NIH/Multi-needle 基准测试的得分为 98.1,虽然仍旧比不上 GPT-4o,但也表明其在处理复杂信息的能力上堪称完美。
并且 405B 版本在 ZeroSCROLLS/QuALITY 基准测试的得分为 95.2,意味着其具有整合海量文本信息的能力,对于关注 LLM 在 RAG 方面性能的 AI 应用开发者来说,可谓是相当友好。
尤为关注的是,Human-Eval 主要是负责测试模型在理解和生成代码、解决抽象逻辑能力的基准测试,而 Llama 3.1 405B 在与其他大模型的比拼中也是稍占上风。
除了主菜 Llama 3.1 405B,虽为配菜的 Llama 3.1 8B 和 Llama 3.1 70B 也上演了一出「以小胜大」的好戏。
就基准测试结果来看,Llama 3.1 8B 几乎碾压了 Gemma 2 9B 1T,以及 Mistral 7B Instruct,整体性能也比 Llama 3 8B 有了显著提升。Llama 3.1 70B 则越级战胜了 GPT-3.5 Turbo。
据官方介绍,针对这次发布的版本,Llama 研究团队在 150 多个涵盖多种语言的基准数据集上对模型性能进行了评估,以及进行了大量的人工评估。
官方最终得出的结论是:
我们的旗舰模型在多种任务上与顶尖的基础模型,如 GPT-4、GPT-4o 和 Claude 3.5 Sonnet 等,具有竞争力。
同时,我们的小型模型在与参数数量相近的封闭和开放模型相比时,也展现出了竞争力。
Llama 3.1 405B 是如何炼成的
那 Llama 3.1 405B 是怎么训练的呢?
据介绍,作为 Meta 迄今为止最大的模型,Llama 3.1 405B 使用了超过 15 万亿个 token 进行训练。
为了实现这种规模的训练并在短时间内达到预期的效果,研究团队优化了整个训练堆栈,在超过 16000 个 H100 GPU 上进行训练,这也是第一个在如此大规模上训练的 Llama 模型。
团队也在训练过程中做了一些优化,重点是保持模型开发过程的可扩展性和简单性:
选择了仅进行少量调整的标准解码器 Transformer 模型架构,而不是混合专家模型,以最大限度地提高训练稳定性。
采用了一种迭代后训练程序,每一轮都使用监督微调和直接偏好优化。这使得研究团队能够为每轮创建最高质量的合成数据,并提升每项功能的性能。
相较于旧版 Llama 模型,研究团队改进了用于预训练和后训练的数据数量和质量,包括为预训练数据开发更预处理和管理管道,为后训练数据开发更严格的质量保证与过滤方法。
Meta 官方表示,在 Scaling Law 的影响之下,新的旗舰模型在性能上超过了使用相同方法训练的小型模型。
研究团队还利用了 405B 参数模型来提升小型模型的训练后质量。
为了支持 405B 规模模型的大规模生产推理,研究团队将模型从 16 位(BF16)精度量化到 8 位(FP8)精度,这样做有效减少了所需的计算资源,并使得模型能够在单个服务器节点内运行。
Llama 3.1 405B 还有一些值得发掘的细节,比如在设计上注重实用性和安全性,使其能够更好地理解和执行用户的指令。
通过监督微调、拒绝采样和直接偏好优化等方法,在预训练模型基础上进行多轮对齐,构建聊天模型,Llama 3.1 405B 也能够更精确地适应特定的使用场景和用户需求,提高实际应用的表现。
值得一提的是,Llama 研究团队使用合成数据生成来产生绝大多数 SFT 示例,这意味着他们并不全然依赖真实世界的数据,而是通过算法生成的数据来训练模型。
此外,研究团队团队通过多次迭代过程,不断改进合成数据的质量。为了确保合成数据的高质量,研究团队采用了多种数据处理技术进行数据过滤和优化。
通过这些技术,团队能够扩展微调数据量,使其不仅适用于单一功能,而且可以跨多个功能使用,增加了模型的适用性和灵活性。
简单来说,这种合成数据的生成和处理技术的应用,其作用在于创建大量高质量的训练数据,从而有助于提升模型的泛化能力和准确性。
作为开源模型路线的拥趸,Meta 也在 Llama 模型的「配套设施」上给足了诚意。
Llama 模型作为 AI 系统的一部分,支持协调多个组件,包括调用外部工具。
发布参考系统和开源示例应用程序,鼓励社区参与和合作,定义组件接口。
通过「Llama Stack」标准化接口,促进工具链组件和智能体应用程序的互操作性。
模型发布后,所有高级功能对开发者开放,包括合成数据生成等高级工作流。
Llama 3.1 405B 内置工具大礼包,包含关键项目,简化从开发到部署的流程。
值得注意的是,新开源协议里,Meta 也不再禁止用 Llama 3 来改进其他模型了,其中也包括最强的 405B 尺寸,真·开源大善人。
附上 92 页论文训练报告地址:
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
一个由开源引领的新时代
网友 @ZHOZHO672070 也火速在 Hugging Chat 上测试了一下 Llama 3.1 405B Instruct FP8 对两个经典问题的回答情况。
遗憾的的是, Llama 3.1 405B 在解决「9.11 和 9.9 谁更大」的难题上遭遇翻车,不过再次尝试之下,它又给出了正确答案。
而在「我一把把把住了」的拼音标注上,其表现也尚可。
网友只用了不到 10 分钟的时间,就借助 Llama 3.1 模型快速构建和部署了一个聊天机器人。
另外,Llama 内部科学家 @astonzhangAZ 也在 X 上透露,其研究团队目前正在考虑将图像、视频和语音功能集成到 Llama 3 系列模型之中。
开源和闭源之争,在大模型时代依然延续着,但今天 Meta Llama 3.1 新模型的发布为这场辩论画上了句号。
Meta 官方表示,「到目前为止,开源大型语言模型在功能和性能方面大多落后于封闭式模型。现在,我们正迎来一个由开源引领的新时代。」
Llama 3.1 405B 的诞生证明了一件事情,模型的能力不在于开或闭,而在于资源投入、在于人和团队等因素,Meta 选择开源或许出于很多因素,但总会有人扛起这面大旗。
只不过,作为第一个吃螃蟹的巨头,Meta 也因此收获了首个超越最强闭源大模型的 SOTA 称号。
Meta CEO 扎克伯格在今天发布的长文《Open Source AI Is the Path Forward》中写道:
「从明年开始,我们预计未来的 Llama 将成为业内最先进的。但在此之前,Llama 已经在开源性、可修改性和成本效率方面领先。」
开源 AI 模型志不在超越闭源,或出于技术平权,不会让其成为少数人牟利的手段,或出于众人拾柴火焰高,推动 AI 生态的繁荣发展。
正如扎克伯格在其长文末尾所描述的愿景那样:
我相信 Llama 3.1 版本将成为行业的一个转折点,大多数开发人员将开始转向主要使用开源技术,我期待这一趋势从现在开始持续发展……共同致力于将 AI 的福祉带给全球的每一个人。
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓