自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 视觉检测系统设计过程中遇到的问题

使用环境:海康的工业相机相机、海康MVS软件。通过架设的两个相机采集图像,其中一个相机采集图像数量少于另一个相机。MVS提示相机丢包。首先可以肯定的一个相机丢包了,另一个不确定。

2022-10-26 21:01:25 2435 1

原创 深度学习——参数量计算

指模型推断时需要多少计算次数是 floating point operations 的缩写(注意 s 小写),可以用来衡量算法/模型的复杂度,这关系到算法速度,大模型的单位通常为 G(GFLOPs:10亿次浮点运算),小模型单位通常为 M通常只考虑乘加操作(Multi-Adds)的数量,而且只考虑 CONV 和 FC 等参数层的计算量,忽略 BN 和 PReLU 等等。则参数个数为:param=(3*3*3+1)*64=1792。则参数个数为:param=(3+1)*5=20。

2022-10-25 22:17:36 4664

原创 深度学习——激活函数

什么是激活函数?神经网络中的每个神经元节点接受上一层神经元的输出值作为本神经元的输入值,并将输入值传递给下一层,输入层神经元节点会将输入属性值直接传递给下一层(隐层或输出层)。在多层神经网络中,上层节点的输出和下层节点的输入之间具有一个函数关系,这个函数称为激活函数。为什么要激活?线性函数具有局限性——线性叠加的结果依旧是线性,多层线性神经元可以合并为一个神经元,而线性模型的能解决的问题有限,无法很好的拟合真实情况。

2022-10-20 19:13:43 298

原创 论文阅读——ssFPN

论文链接:https://arxiv.org/pdf/2208.11533v2.pdf一种新的 FPN Scale Sequence(s²) 特征提取方法,以加强小目标的特征信息。作者将FPN结构视为尺度空间,并在FPN的水平轴上通过3D 卷积提取(s²)特征。s²基本上是一个尺度不变的特征,建立在小目标的高分辨率金字塔特征图上。此外,所提出的特征可以扩展到大多数基于FPN的目标检测模型。

2022-09-30 10:15:57 1227 1

原创 深度学习——目标检测损失函数

目标检测损失分为类别损失和位置损失。

2022-09-25 17:07:37 4088

原创 深度学习——数据集分析

每每拿到数据集,为更好地了解数据,做出合适的预处理,需要对数据集进行一定的分析。一、图片从图片本身出发,我们研究图片的本身尺寸——即图像的宽高散点图;也需统计不同尺寸的图像的数量。总结,从图片出发,基础的分析可以有两种种。总结上述分析角度1、图像的宽高散点图2、不同尺寸的图像的数量3、标注框的宽高散点图4、标注框的宽高比5、各类别的标注框数量6、标注框中心分布情况7、每个类别的图片数量8、每个类别的宽高散点图9、每张图片上的标注框数量。

2022-09-21 20:13:01 2670 1

原创 深度学习——数据集预处理

深度学习常常需要对图像数据进行预处理,通过不同手段,或增加数据量或提高数据质量。一、基于像素信息基于像素的数据增强常用的方法:1、亮度2、饱和度3、对比度4、颜色空间转换5、噪声扰动6、灰度图本文介绍一些常用数据增强方法。具体使用待补充。

2022-09-21 09:54:16 2652

转载 深度学习——泛化能力定量评价

上文说提高提升泛化能力的方法,那么怎么定量确定一个模型的泛化能力呢。1、错误率与精度2、查准率、查全率、F13、ROC与AUC

2022-09-21 09:01:29 364

转载 深度学习——提升模型泛化能力的方法

泛化能力指对同类型独立分布的新数据的预测结果是否符合我们的预期。我们常常用泛化能力来反应一个模型的好坏,将不同程度的泛化状态分为:欠拟合、拟合和过拟合。提升模型的泛化能力可以从两个方面着手:数据集和网络。

2022-09-21 08:47:14 2366

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除