Transformer架构, 作为当今几乎所有尖端大型语言模型架构的核心组成部分。
可以说是一个必学的架构,但是关于Transformer系统性的教程书可以说是没有。
我也是无意中在网上发现了世界上第一本全面解析Transformer的综合性书籍。
Transformers for Machine Learning
这本书涵盖 60多个Transformer架构 和对应的知识及技巧,技术包括 语音、文本、时间序列和计算机视觉 等方向,
Transformers for Machine Learning
最重要的是这本书是从 研究生视角 出发撰写的(只需要本科基础),大家可以轻松读懂。
来自本书前言
教程书和代码一起打包好了
这本书的评价也非常不错
亚马逊评价
一些差评也是因为kindle上公式显示有问题**(PDF版本没有这个问题,大家可以放心学)**
亚马逊评价
本书目录
01
深度学习与Transformer:入门指南
02
Transformer基础与概览
03
基于Transformer的双向编码器表示(BERT)
04
多语言Transformer架构解析
05
Transformer的改进与变体
06
预训练与领域特定的Transformer模型
07
Transformer的可解释性与透明度技术
从基础到进阶(还包含实际案例和代码)
这本书不仅仅是只对Transformer进行了简单的解释,而是每种架构都包含了 实用提示和技巧 以及如何在 实战中 使用它们,相信通过这本书大家都可以轻松掌握Transformer。
Transformers for Machine Learning
