当下,Agent AI 领域正呈现出一片火热景象。在此,让我们一同深入探讨一篇饶有趣味的论文《Agent AI: 多模态交互的展望》。
该论文聚焦于Agent AI这一新兴领域,从概念、技术、应用、挑战,再到未来发展方向,展开了全方位的探讨。其核心目的在于为多模态智能研究呈上一份全面详尽的综述,进而为Agent AI的蓬勃发展注入强劲动力。
一、Agent AI 概述
-
定义与背景:AI 系统旨在从环境收集信息并交互,Agent AI 是能感知多模态输入并产生行动的交互式系统。大语言模型和视觉语言模型的发展促使其兴起,它整合多种能力,有望成为通用人工智能的途径,当前研究聚焦于利用这些模型构建能在复杂环境中动态交互的智能体。
-
系统架构:由环境感知与任务规划、智能体学习、记忆、行动和认知等模块组成。可利用预训练的大语言模型和视觉语言模型初始化,也可采用单智能体变压器模型,通过特定策略学习执行任务,且能利用多种数据和技术持续学习与改进。
二、Agent AI 技术要点
1、与基础模型集成:
虽基础模型有重要作用,但在具身 AI 任务中存在理解、生成等方面的局限。将其集成到 Agent AI 框架可提升性能,不过会产生幻觉、偏见等问题,同时涉及数据隐私、可解释性、推理增强和监管等多方面的考量。
2、学习策略与机制
-
强化学习(RL):通过奖励学习状态 - 动作关系,但面临奖励设计、数据收集和长序列任务等挑战,大语言模型和视觉语言模型可辅助解决部分问题。
-
模仿学习(IL):利用专家数据模仿行为,如在机器人领域的行为克隆,近期结合新技术提升了性能。
-
传统 RGB 学习:利用图像输入学习智能体行为存在维度灾难问题,可通过增加数据或引入归纳偏差解决,同时注重数据合成与技能优化。
-
上下文学习:在自然语言处理中有效,在多模态模型中也有应用,且可结合环境反馈改进。
-
系统优化:包括空间和时间优化,前者涉及多智能体协调与资源分配,后者关注任务调度与执行效率,可利用多种方法实现。
三、Agent AI 分类
1、通用智能体领域:
计算机基础智能体需自然交互并泛化到多种情境和模态,大型基础模型和交互式 AI 推动其发展,在任务规划、视频理解、人机交互等方面有新功能。
2、具身智能体
-
行动智能体:在模拟或现实环境中执行物理动作,如游戏 AI 和机器人,通过自然语言与环境和人类交互,不同游戏场景下行为和目标各异。
-
交互智能体:可与世界交互,形式多样,如通过对话提供信息,在诊断、知识检索等领域有应用。
3、模拟与环境智能体:
利用模拟环境学习策略可避免在现实中训练的风险和成本,许多模拟平台用于研究,学习过程可能需集成特定功能,且存在模拟到现实的迁移问题,有多种解决技术。
4、生成智能体:
大型生成模型降低了交互内容创作成本,在 VR 等领域有多种应用目标,如场景创建与编辑。
5、知识与逻辑推理智能体
-
知识智能体:融合隐式和显式知识进行推理,克服语言模型知识静态的局限,增强对世界的理解和响应能力。
-
逻辑智能体:在基础模型中处理逻辑推理任务,与传统逻辑系统不同,也有研究尝试嵌入独立逻辑模块提升性能。
-
情感推理智能体:旨在使智能体在人机交互中具备情感理解和同理心,已有相关数据集和模型研发。
-
神经符号智能体:基于神经元和符号混合系统解决自然语言任务,有特定的编码和解码模型,且在视觉推理方面有改进研究。
6、大语言模型和视觉语言模型智能体:
大语言模型可用于任务规划和推理,在机器人等领域有应用,视觉语言模型也为创建多模态智能体提供基础。
四、Agent AI 应用领域
1、游戏
-
非玩家角色行为:利用大语言模型可提升非玩家角色行为的自主性和适应性,增强游戏交互性和沉浸感。
-
人机交互:改善玩家与非玩家角色的交互,使其更自然和丰富,为研究人机交互提供平台。
-
游戏分析:大语言模型和视觉语言模型可分析游戏数据,帮助开发者改进游戏,智能体可提升玩家与游戏系统的交互体验。
-
场景合成:自动或半自动生成游戏场景,包括地形、物体放置、光照等,提高创作效率和质量。
-
实验与结果:利用大语言模型进行高层动作描述和预测,有不同的训练和实验设置及结果展示。
2、机器人
-
关键技术:视觉运动控制集成视觉和运动能力,确保机器人精准操作和适应环境;语言条件操作使机器人能理解和执行语言指令,降低操作难度;技能优化聚焦于提升机器人物理技能,解决从指令到实际操作的难题。
-
大语言模型 / 视觉语言模型应用:在多模态系统、任务规划与技能训练、现场优化、对话智能体和导航智能体等方面发挥重要作用,推动机器人技术发展。
-
实验与结果:实验展示了大语言模型在任务规划、参数化和多模态输入处理等方面的能力,以及在视觉语言导航任务中的性能提升。
3、医疗保健:
诊断智能体可辅助诊断,但存在幻觉风险;知识检索智能体可降低风险,提高诊断准确性;远程医疗和监测智能体可改善医疗服务效率和可及性。同时展示了现代多模态智能体在医疗图像和视频理解方面的能力与局限。
4、多模态智能体
-
图像 - 语言理解与生成:包括图像字幕、视觉问答等任务,要求智能体具备多方面能力,以实现更人性化的交互。
-
视频与语言理解与生成:视频字幕和理解任务面临挑战,现有模型利用多种方法改进,如结合大语言模型和视觉语言模型,以及生成数据集进行指令调整等。
-
实验与结果:介绍了知识密集型模型、多模态智能体和视觉指令调整等方面的研究及实验结果,展示了不同模型的性能优势。
5、视频语言实验:
对预训练图像 - 大语言模型进行时间扩展和微调用于视频理解,虽有成果,但存在对细节理解不足和模态缺失等问题。利用大语言模型整合多模态信息可提高视频描述准确性,体现了多模态融合的重要性。
6、自然语言处理智能体
-
大语言模型智能体:通过工具使用、推理规划和反馈机制等方向改进语言智能体,提升人机协作能力。
-
通用大语言模型智能体:研究重点在于提升对智能体内容和自然语言的理解,促进人机交互。
-
指令跟随大语言模型智能体:训练方法不断发展,从强化学习到更高效的指令调整,提高智能体性能。
-
实验与结果:实验表明现有对话系统在事实性回答方面存在不足,通过多种方法改进可提升性能,如逻辑嵌入和知识选择器等技术的应用。
五、Agent AI 跨模态、领域和现实的研究
-
跨模态理解智能体:多模态理解面临数据和训练模块问题,改变现有策略如联合调整模型可能是未来发展方向,已有相关模型性能改进的案例。
-
跨领域理解智能体:创建通用智能体的关键挑战是不同领域的差异,现有方法多为针对特定领域微调,未充分利用领域间共性,需探索新方法。
-
跨模态和跨现实交互智能体:在跨现实任务中取得一定成功,但同时面临理解不同现实环境的挑战,如视觉和物理差异,模拟到现实的迁移是重要问题。
-
模拟到现实迁移技术:包括域随机化、域适应和改进模拟等技术,是具身智能体研究的核心挑战,需理论和实证研究推动发展。
六、Agent AI 的持续改进
-
基于人类交互数据:利用大量人机交互数据训练智能体,包括将交互示例作为数据、学习人类偏好和进行安全训练等策略,提升智能体性能。
-
基于基础模型生成数据:通过大语言模型指令调整和生成视觉 - 语言对数据等方法,从基础模型生成数据用于训练,促进智能体学习。
七、Agent AI 数据集和基准
-
“CuisineWorld” 数据集:用于多智能体游戏,测试协作效率,提供多种模式和评估指标,推动多智能体游戏研究。
-
音频 - 视频 - 语言预训练数据集:专注于视频理解,设置视频文本检索和问答任务,强调多模态融合与知识应用,促进相关模型发展。
八、Agent AI 的影响与伦理考量
-
广泛影响:在游戏、机器人、医疗等领域的应用可能带来变革,推动行业发展,同时为研究人员和从业者提供资源和知识,促进技术进步。
-
伦理问题:内容生成可能被滥用,在医疗等领域存在风险,如数据隐私和诊断准确性问题,需遵循伦理准则开发和应用,确保技术有益。
九、Agent AI 的多样性与未来发展
-
多样性体现:研究涵盖多领域,体现了问题、视角和解决方案的多样性,促进对智能体技术的全面理解。
-
未来方向:将继续发展多模态系统、通用模型、模态融合方法、人机交互技术和解决模型问题,推动 Agent AI 向通用人工智能发展。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!