想不想来个上帝视角,看看AI现在发展得怎么样了?技术进展如何、钱都去哪了、对不同人的影响又咋样?
这些问题众说纷纭,不过一份非常权威的报告来了,就在2025年4月初,由李飞飞联合领导的斯坦福大学以人为本人工智能研究所(Stanford HAI),发布了最新的《2025 年人工智能指数报告》(Artificial Intelligence Index Report 2025)。
报告内容巨丰富,长达 456 页,分成八个大章节,把AI的现状算是给说明白了,无论是想深度了解AI在全球的最新发展状况,还是做PPT、汇报的时候用作资料,都非常棒。
咱们也第一时间搞了这份报告的中英文对照翻译,今天挑一些比较有价值的洞见,来跟你分享一下,文件下载咱们放到最后。
AI科研进展:中美分庭抗礼
2014年之前,生成式AI模型是由学术界主导,而在这个时间点之后,AI模型开始主要由产业界贡献。2024年,市面上90%的大语言模型都是由公司、而不是科研机构发布,果然赚钱才是技术进步的主要推动力呀。
拿2024年的新发布模型来说,谷歌、OpenAI、阿里、苹果、Meta、英伟达等公司新发布的模型都超过了3个,而学界只有麻省理工和加州大学伯克利分校分别发布了两款新的AI模型。
从专利数量来看,过去十几年,全球的人工智能专利,中国占比在持续走高,2017年超过美国之后继续一路遥遥领先,现在占了全球的七成,咱就说有没有拿到手软吧。
不过,如果看知名AI模型的数量,截止到报告统计的2024年,中国新发布的、值得关注的AI模型的数据是15个,少于美国的40个。
注意这里所谓“值得关注的、新发布的AI模型”,使用的数据是⼈⼯智能指数数据提供商 Epoch AI 所认定的,所以数据并不算严格准确,要说起各种没引起Epoch AI关注的,那数量肯定是多出不少。
中美两国众多的数据对比中,这一组很有意思:可以看到在大语言模型的训练阶段,训练所消耗的运算量在整体趋势上持续走高,而中国大语言模型所消耗的运算量明显低于美国的模型,这一点在DeepSeek和Qwen模型上非常明显。
就省钱这块吧,咱还是有一手的。
而训练之后的推理使用成本,在商业竞争的环境下,也呈现了逐年降低的大趋势。这也是技术随商业竞争发展带来的好处,更低的价格意味着更多的机构和个人用得起,技术发展得也就越快。
AI能力:进化速度有点吓人
报告中的这张图让我印象很深刻。
横坐标轴是年份,纵坐标轴代表MMMU、GPQA 和 SWE-bench等能力基准测试,不同颜色的曲线代表AI在不同领域的能力,分别是:图像处理、阅读理解、多任务语言理解、博士级科学问题、视觉推理、英语理解、数学竞赛、多模态理解和推理。
看到那条横虚线了吗?那是人类的平均基准能力。你能看到AI以多快的速度,逼近甚至超越我们花了上百万年进化的大脑、几百年积累的现代生存能力吗?有没有一种山雨欲来、乌云压阵的感受呢?
这里比较尴尬的是,由人类设计的“传统”测试标准,比如MMLU、GSM8K 和 HumanEval等,已经满足不了AI的快速发展了。AI说:别老考三年级的了,给我整点四年级的!
这就倒逼着研究人员设计出更加严格的测试方法,其中值得注意的是这个Humanity’s Last Exam,意思就是“来自人类的最终考核”,非常严格,表现最好的AI得分率也只有8.8%。AI最终拿下这场考试,又要用多久呢?
2025年一个被广泛关注的方向是人工智能代理(AI Agent),也就是让AI从对话、生成内容,扩展到帮助人类执行多步骤、跨软件的复杂任务。
从这份报告来看,目前人工智能代理只能说是初露锋芒,2024年推出的RE-Bench评估方法中,在2小时的任务时间中,顶级AI的能力是人类专家的4倍,但随着实验时间的增加(也就是任务越来越复杂),人类开始反超AI,32小时已经达到了AI表现的4倍。
AI小伙子,我们人类当年在非洲大草原上打猎,就靠一个耐力拔群,这块儿还得再努把力呀。
DeepSeek的开源给OpenAI好好上了一课,根据LMSYS Chatbot Arena的测试,目前开源模型的表现性能整体上还是低于闭源模型,不过从曲线上也能看出来,这种差距正在快速缩小。
视线再次来到中美两国,在顶级模型的性能方面,美国长期以来一直处于全球第一,而中国则稳居第二,直到2023年,美国AI模型的性能还明显优于中国,不过2024 年 1 ⽉,这⼀差距缩⼩了 9.26%。到 2025 年 2 ⽉,这⼀差距缩⼩⾄ 1.7%。
报告里也点名提到,DeepSeek R1的发布给美国AI市场带来了很大的冲击,怎么的,又是限制硬件又是限制数据的,咋追这么快呢?
下面这张图可以看到,AI模型由OpenAI一家独大的局面正在被打破,排名第一和第十的AI模型之间的差异,从2024年的11.9%,到2025年的5.4%;排名前两位的模型之间的差距也从4.9% 缩小到了0.7%。
AI领域的竞争越来越激烈,性能差异越来越小,对于广大使用者来说也是好事儿。
AI经济:钱都花哪去了?
看一个领域的蓬勃发展,最直接的方式就是看钱是不是涌向它。
2024年,AI领域仅在生成式人工智能这个风口,就吸引了339亿美元,比2023年增长了18.7%,比2022年增长了8倍,你看这钱是真热啊。
要说在市场筹钱的能力,那美国的AI公司还是遥遥领先的。2024年,美国在人工智能领域的投资额为 1091 亿美元,是 2014 年的 11.7 倍,中国的数量是93亿美元,差不多是美国的十分之一。
那么具体来说,过去两年投向AI领域的钱,都花到哪了?
这个数据很有意思,排名第一的是AI基础设施和研究,然后是数据管理、医疗保健、金融、制造业、半导体等,你看虽然咱们老百姓接触最多的是写个文章、做个视频之类的,但内容创作、翻译、创意、视频这些领域,其实都不是投资的大头,排了个尾巴,AI真正改变还是大行业。
非要说呢,也有和老百姓相关的领域排名靠前,但是,报告的文字说明中,对排名第四的产业只字未提。
(AI:行行行,还是你们人类懂啊)
作为中国读者,机器人这个领域也值得关注,从2021年以来,中国安装的⼯业机器⼈数量就遥遥领先,不仅甩出后面几个发达国家很多,甚至数量一直保持超过全球其他国家的总和。当AI与机器人结合,这个优势会爆发出很大的能量。
AI态度:中国人的乐观
未来人们对AI怎么看待?总的来说,认为AI会改变自己工作方式的人,还是比担心被AI取代工作的人要多,“从改变自己做起”,这可能是一种面对技术变革比较乐观的态度吧。
报告引用了麦肯锡公司对不同行业的调研结果,全球公司在2017到2023年对人工智能的应用可以说不温不火,不过AI的普及程度在2024年猛增,78%的公司会用到人工智能,生成式AI的使用率也在2023年的33%快速上涨到2024年的71%。
对于AI这样一场巨大的变革,我一直以为全球的小伙伴感受都差不多,不过最近和几个在不同国家工作的朋友聊天,发现还真不是这样,有的地区相对消极抵抗,有的地区则是反应平平,或许这种“全民AI热”,只在少数国家存在。
斯坦福这份报告也确实验证了这件事儿:无论是认为AI会改善工作市场方面,还是AI会提升个人工作效率方面,中国都在全球排在显眼的位置。
可能这和咱们国家的人们真是发自内心地追求更高效有关系吧,波兰、瑞士的小伙伴说,反正都不加班,A什么I呀,别耽误老子度假。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!