描述:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。 例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
诀窍:
思路:递归思想
前序序列的第一个元素即为根节点,根据根节点的值在中序序列找到根节点的位置假定为i
则根据二叉树前序和中序的规律:
前序序列索引1~i构成子数列为根节点左子树的前序序列,i+1~n1构成子数列为根节点右子树的前序序列(n1为前序序列的长度);
中序序列索引0~i-1构成子数列为根节点左子树的中序序列,i+1~n1构成子数列为根节点右子树的中序序列(n1为前序序列的长度);
根节点的左节点为左子树的根节点,根节点的右节点为右子树的根节点
根据这样的规律一直递归下去,直到序列为空。
实现:
public class Demo04 {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
//前序的第一个数定为根
TreeNode root=new TreeNode(pre[0]);
int len=pre.length;
//当只有一个数的时候
if(len==1){
root.left=null;
root.right=null;
return root;
}
//找到中序中的根位置
int rootval=root.val;
int i;
for(i=0;i<len;i++){
if(rootval==in[i])
break;
}
//创建左子树
if(i>0){
int[] pr=new int[i];
int[] ino=new int[i];
for(int j=0;j<i;j++){
pr[j]=pre[j+1];
}
for(int j=0;j<i;j++){
ino[j]=in[j];
}
root.left=reConstructBinaryTree(pr,ino);
}else{
root.left=null;
}
//创建右子树
if(len-i-1>0){
int[] pr=new int[len-i-1];
int[] ino=new int[len-i-1];
for(int j=i+1;j<len;j++){
ino[j-i-1]=in[j];
pr[j-i-1]=pre[j];
}
root.right=reConstructBinaryTree(pr,ino);
}else{
root.right=null;
}
return root;
}
public static void main(String[] args) {
}
}