浅谈 容斥

13 篇文章 0 订阅
10 篇文章 0 订阅

容斥

容斥原理

它在解决计数问题乃至一切存在交集的问题时,逻辑清晰,方便思考,优势显著

[例1] 求图形的面积

S=A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

容斥原理公式(求集合交集)

假设集合U中有n种不同属性,第i种属性为Pi 有属性Pi的元素构成集合Si,则
∣ ⋃ i = 1 n S i ∣ = ∑ i ∣ S i ∣ − ∑ i < j ∣ S i ∩ S j ∣ + ∑ i < j < k ∣ S i ∩ S j ∩ S k ∣ − . . . + ( − 1 ) m − 1 ∑ a i < a i + 1 ∣ ⋂ i = 1 m S a i ∣ + . . . + ( − 1 ) n − 1 ∣ S 1 ∩ . . . ∩ S a i ∣ \left | \bigcup_{i=1}^{n}S_{i}\right |=\sum_{i}\left | S_{i} \right |-\sum_{i<j}\left |S_{i} \cap S_{j}\right | +\sum_{i<j<k}\left |S_{i} \cap S_{j} \cap S_{k}\right |-...+(-1)^{m-1}\sum_{a_{i}<a_{i+1}}\left |\bigcap^{m}_{i=1}S_{a_{i}} \right |+...+(-1)^{n-1}\left |S_{1} \cap...\cap S_{a_{i}}\right | i=1nSi=iSii<jSiSj+i<j<kSiSjSk...+(1)m1ai<ai+1i=1mSai+...+(1)n1S1...Sai
加多了就减,减多了就加,则
∣ ⋃ i = 1 n S i ∣ = ∑ m = 1 n ( − 1 ) m − 1 ∑ a i < a i + 1 ∣ ⋂ i = 1 m S a i ∣ \left | \bigcup_{i=1}^{n}S_{i}\right |=\sum_{m=1}^{n}(-1)^{m-1}\sum_{a_i<a_{i+1}}\left | \bigcap_{i=1}^{m}S_{a_{i}}\right | i=1nSi=m=1n(1)m1ai<ai+1i=1mSai

韦恩Venn图

——一种表示集合关系的图

补集

对于全集U中的集合的补集,可以通过容斥原理计算

集合的补: A ˉ = S − A \bar{A}=S-A Aˉ=SA

集合U中,集合A B的交呢?

A 1 , A 2 , . . . , A m A_{1},A_{2},...,A_{m} A1,A2,...,Am为集合中具有一些性质的元素的集合,则
∣ A 1 ˉ ∩ A 1 ˉ ∩ . . . ∩ A m ˉ ∣ = ∣ S ∣ − ∑ ∣ A i ∣ + ∑ ∣ A i ∩ A j ∣ − ∑ ∣ A i ∩ A j ∩ A k ∣ + . . . + ( − 1 ) m ∑ ∣ A 1 ∩ A 2 ∩ . . . ∩ A m ∣ \left |\bar{A_{1}}\cap\bar{A_{1}}\cap...\cap\bar{A_{m}}\right | =\left |S\right |-\sum\left |A_{i}\right |+\sum\left |A_{i}\cap A_{j}\right |-\sum\left |A_{i}\cap A_{j}\cap A_{k} \right |+...+(-1)^{m}\sum \left | A_{1}\cap A_{2}\cap ...\cap A_{m}\right | A1ˉA1ˉ...Amˉ=SAi+AiAjAiAjAk+...+(1)mA1A2...Am

=>

∣ ⋂ i = 1 n S i ∣ = ∣ U ∣ − ∣ ⋃ i = 1 n S i ˉ ∣ \left | \bigcap^{n}_{i=1}S_{i}\right |=\left | U\right |-\left | \bigcup^{n}_{i=1}\bar{S_{i}}\right | i=1nSi=Ui=1nSiˉ

T 1 「H A O I 2 008」硬币购物

硬币购物一共有4种硬币。面值分别为 c 1 , c 2 , c 3 , c 4 c1,c2,c3,c4 c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带 d i di di c i ci ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。

输入

第一行 c 1 , c 2 , c 3 , c 4 , t o t c1,c2,c3,c4,tot c1,c2,c3,c4,tot 下面tot行 d 1 , d 2 , d 3 , d 4 , s , d1,d2,d3,d4,s, d1,d2,d3,d4,s,其中 d i , s < = 100000 , t o t < = 1000 di,s<=100000,tot<=1000 di,s<=100000,tot<=1000

输出

每次的方法数

样例

样例输入1
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
样例输出1
4
27

思路

DP预处理出每种硬币没有上限的情况,时间复杂度位O(S)

DP方程易得:f[j]+=f[j-c[i]] (c[i]~N(max数据))

接下来对于每个询问,根据容斥原理,答案为:

得到面值S的超过限制的方案数 – 1种超过限制方案数 – 2种超过限制方案数 – 3种超过限制方案数 – 4种超过限制方案数 + 1,2种超过限制方案数 + 1,3种超过限制方案数 + …… + 1,2,3,4种超过限制方案数。

然后算就完了!

code

#include<bits/stdc++.h>
#define ll long long
const int N=100000;
using namespace std;
ll ans,dp[N+2];
int tot,s;
int c[5],d[5];
void dfs(int x,int k,int s) {//x:硬币面值id,k:使用了k种硬币,s:还需要凑s元
	if(s<0) return ;
	if(x==5) {
		if(k&1)ans-=dp[s];//k不是2的倍数,-
		else ans+=dp[s];//k是2的倍数,+
		return ;
	}//硬币只有三种,结束
	dfs(x+1,k+1,s-(d[x]+1)*c[x]); //使用c[x]面值的硬币
	dfs(x+1,k,s);//不使用
}//容斥计算公式
int main() {
	for(int i=1; i<=4; i++) {
		scanf("%d",&c[i]);
	}
	scanf("%d",&tot);
	dp[0]=1;
	for(int i=1; i<=4; i++) {
		for(int j=c[i]; j<=N; j++) {
			dp[j]+=dp[j-c[i]];
		}//dp[j]:能凑出j元的方案数
	}//dp先求出硬币没有数量限制的答案
	while(tot--) {
		for(int i=1; i<=4; i++) {
			scanf("%d",&d[i]);
		}
		scanf("%d",&s);
		ans=0;//初始化
		dfs(1,0,s);//计算
		printf("%lld\n",ans);//输出
	}
	return 0;
}

T 2 「J S O I 2011」分特产

题目描述

J Y Y JYY JYY带队参加了若干场 e x t A C M / I C P C extACM/ICPC extACM/ICPC比赛,带回了许多土特产,要分给实验室的同学们。

J Y Y JYY JYY 想知道,把这些特产分给 n 个同学,一共有多少种不同的分法?当然, J Y Y JYY JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。

例如, J Y Y JYY JYY 带来了 2 袋麻花和 1 袋包子,分给 A 和 B 两位同学,那么共有 4 种不同的

分配方法:

A:麻花, B:麻花、包子

A:麻花、麻花, B:包子

A:包子, B:麻花、麻花

A:麻花、包子, B:麻花

输入输出格式

输入格式

输入数据:

第一行是同学的数量 n 和特产的数量 m

第二行包含 M 个整数,表示每一种特产的数量

N,M不超过 1000 ,每一种特产的数量不超过 1000

输出格式

输出一行,不同分配方案的总数。

由于输出结果可能非常巨大,你只需要输出最终结果 m o d 1 0 9 + 7 mod 10^{9}+7 mod109+7 的数值就可以了

输入输出样例

输入样例 #1

5 4
1 3 3 5

输出样例 #1

384835

思路

首先预处理组合数

独立分析m个特产(最后乘起来即可)

不考虑每人一个的限制

将n-1加入到特产集合得到 a i + n − 1 a_{i}+n-1 ai+n1

从中选n-1个对象做为搁板

得到总的分配方案U为 ∏ i = 1 m C a i + n + 1 m − 1 ∏^{m}_{i=1}C^{m-1}_{a_{i}+n+1} i=1mCai+n+1m1

再减去不合法方案数

不合法方案数= 从n个盒子中选k个盒子为空 属性1 ,1个盒子空,属性2,2个盒子空, …属性n-1 n-1个盒子空

code

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2002,p=1000000007;
int n,m;
ll ans,a[N],c[N][N];
int main() {
	scanf("%d%d",&n,&m);
	for(int i=1; i<=m; i++) {
		scanf("%lld",&a[i]);
	}
	c[0][0]=1;
	for(int i=1; i<=N-5; i++) {
		c[i][0]=1;
		for(int j=1; j<=i; j++) {
			c[i][j]=(c[i-1][j]+c[i-1][j-1])%p;
		}
	}//组合数
	for(int i=0; i<n; i++) {
		ll tot=c[n][i];
		for(int j=1; j<=m; j++) {
			ll x=a[j]+n-i-1,y=n-i-1;
			tot=(tot*c[x][y])%p;
		}
		if(i&1) ans=(ans-tot+p)%p;
		else ans=(ans+tot+p)%p;
	}
	printf("%d",ans);
	return 0;
}

完结撒花❀

★,°:.☆( ̄▽ ̄)/$:.°★

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值