0-1背包问题
时限:1000ms 内存限制:10000K 总时限:3000ms
描述
需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高。
输入
多个测例,每个测例的输入占三行。第一行两个整数:n(n<=10)和c,第二行n个整数分别是w1到wn,第三行n个整数分别是p1到pn。
n 和 c 都等于零标志输入结束。
n 和 c 都等于零标志输入结束。
输出
每个测例的输出占一行,输出一个整数,即最佳装载的总价值。
输入样例
1 2
1
1
2 3
2 2
3 4
0 0
1
1
2 3
2 2
3 4
0 0
输出样例
1
4
4
代码展示
#include <iostream>
#include <algorithm>
using namespace std;
double cw; //当前装入背包中的重量
double cv; //当前装入背包中的价值
int bestv; //最大价值
int c; //背包的容量
int n; //物品的种类
struct Item
{
int w; //每个物品的重量
int v; //每个物品的价值
};
Item it[100]; //定义一个物品的数组
bool compare(Item a, Item b) //自定义一个compare函数作为sort函数的输入
{
//按单位重量的价格降序排序
return a.v/a.w > b.v/b.w;
}
double bound(int i) //剪枝使用
{
double cleft = c - cw; //定义背包剩余量
double b = cv; //为了防止cv量发生变化,定义一个b来接收代替
while(i <= n && it[i].w <= cleft) //定义一个循环,把物品数组中的物品按顺序全部添加到背包中,直到装不下为止
{
cleft -= it[i].w; //每装一个,背包剩余容量就减少相应空间
b += it[i].v; //每装一个,当前价值就相应增加
i++; //i++ 装完一个再装下一个
}
if(i <= n) //如果还剩商品没装,但是背包的容量已经不足以装下下一个商品
{
b += it[i].v/it[i].w*cleft; //那么我们把装不下的商品分解掉,然后将碎片装入背包,填满背包为止
}
return b;
}
void backtrack(int i)
{
if(i > n) //此时没有左子树,不能再往下扩展节点
{
if(cv > bestv)
{
bestv = (int)cv; //保存一下当前的最优值
}
return; //回溯
}
if(it[i].w <= c - cw) //如果可以将该物品装进背包,那么就装
{
cv += it[i].v;
cw += it[i].w;
backtrack(i+1); //装完之后再装下一个
cv -= it[i].v; //回退到父节点,往其他方向扩展
cw -= it[i].w;
}
if(bound(i+1) > bestv)
{
backtrack(i+1);
}
}
int main()
{
while((cin >> n >> c) && (c || n))
{
bestv = 0;
for(int i = 1; i <= n; i++)
{
cin >> it[i].w;
}
for(int i = 1; i <= n; i++)
{
cin >> it[i].v;
}
sort(it+1, it+n+1, compare); //c++提供的STL库函数
backtrack(1); //从1开始递归
cout << bestv << endl;
}
return 0;
}
运行结果