斐波那契数列:
前面相邻两项之和,构成了后一项
通项公式
通项公式的推导
斐波那契数列:1、1、2、3、5、8、13、21、……如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1) = 1,F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3),
显然这是一个线性递推数列。
package day08; //包名自定义,此处为day08
import java.util.Scanner; //导包
public class Demo_Java {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in); //创建键盘录入对象
System.out.println("请输入一个100以内的整数");
int n = sc.nextInt(); //将键盘录入的值赋给n
int[] arr = new int[100]; //创建并声明数组
arr[1] = 1; //初始化F[1] = 1
arr[2] = 1; //初始化F[2] = 1
for(int i = 3 ;i < 100 ;i++) { //for循环
arr[i] = arr[i - 1] + arr[i - 2];
}
System.out.println(arr[n]); //打印F[n]
}
}