题意
给定两个字符串str1和str2,再给定三个整数ic,dc和rc,分别代表插入、删除和替换一个字符的代价,请输出将str1编辑成str2的最小代价。
题解
典型的动态规划,思路与LeetCode系列72—编辑距离类似,只是加了一些附加条件
改动的只有base case和状态转移方程,详情见代码
class Solution {
public:
/**
* min edit cost
* @param str1 string字符串 the string
* @param str2 string字符串 the string
* @param ic int整型 insert cost
* @param dc int整型 delete cost
* @param rc int整型 replace cost
* @return int整型
*/
int minEditCost(string str1, string str2, int ic, int dc, int rc) {
int n1 = str1.size();
int n2 = str2.size();
int dp[n1+1][n2+1];
// base case
dp[0][0] = 0;
for(int i = 1; i <= n1; i++)
dp[i][0] = i*dc;
for(int j = 1; j <= n2; j++)
dp[0][j] = j*ic;
for(int i = 1; i <= n1; i++){
for(int j = 1; j <= n2; j++){
if(str1[i-1] == str2[j-1])
dp[i][j] = dp[i-1][j-1];
else{
dp[i][j] = minn(dp[i][j-1]+ic, dp[i-1][j]+dc, dp[i-1][j-1]+rc);
}
}
}
return dp[n1][n2];
}
int minn(int a, int b, int c){
return min(a, min(b, c));
}
};