openCV
文章平均质量分 90
Dylan、
Wubba Lubba dub dub
展开
-
openCV-Python图像特征提取和描述SIFT/SURF算法
SIFT/SURF算法1.1 SIFT原理前面两节我们介绍了Harris和Shi-Tomasi角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗口,就检测不到角点了。所以,下面我们来介绍一种计算机视觉的算法,尺度不变特征转换即SIFT (Scale-invariant feature transform)。它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 Davi原创 2021-05-15 10:37:52 · 4496 阅读 · 4 评论 -
openCV人脸识别简单案例
1 基础我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 Haar 特征会被使用,就像我们的卷积核,每一个特征是一 个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。Haar特征可用于于图像任意位置,大小也可以任意改变,所以矩形特征值是原创 2021-05-05 18:39:44 · 4263 阅读 · 1 评论 -
openCV模板匹配和霍夫变换
文章目录模版匹配和霍夫变换1 模板匹配1.1 原理1.2 实现2 霍夫变换2.1 原理2.2 霍夫线检测2.3 霍夫圆检测[了解]image-20191008105125382模版匹配和霍夫变换学习目标掌握模板匹配的原理,能完成模板匹配的应用理解霍夫线变换的原理,了解霍夫圆检测知道使用OpenCV如何进行线和圆的检测1 模板匹配1.1 原理所谓的模板匹配,就是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图原创 2021-04-24 13:29:36 · 2294 阅读 · 0 评论 -
openCV图像平滑处理(噪声类型及其滤波处理)
图像平滑学习目标了解图像中的噪声类型了解平均滤波,高斯滤波,中值滤波等的内容能够使用滤波器对图像进行处理1 图像噪声由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。常见的图像噪声有高斯噪声、椒盐噪声等。1.1 椒盐噪声椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。椒盐噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生、类比数位转换器或位元传输转载 2021-04-23 22:11:09 · 3706 阅读 · 0 评论 -
openCV形态学操作(膨胀腐蚀、开闭运算、礼帽和黑帽)
形态学操作学习目标理解图像的邻域,连通性了解不同的形态学操作:腐蚀,膨胀,开闭运算,礼帽和黑帽等,及其不同操作之间的关系1 连通性在图像中,最小的单位是像素,每个像素周围有8个邻接像素,常见的邻接关系有3种:4邻接、8邻接和D邻接。分别如下图所示:4邻接:像素p(x,y)的4邻域是:(x+1,y);(x-1,y);(x,y+1);(x,y-1),用N_4§N4(p)表示像素p的4邻接D邻接:像素p(x,y)的D邻域是:对角上的点 (x+1,y+1);(x+1,y-1);(x-1,y原创 2021-04-23 21:28:58 · 3037 阅读 · 7 评论