最小生成树算法———prim算法(C++实现)

写在前面

由于本人实力尚浅,接触算法没多久,写这篇blog仅仅是想要提升自己对算法的理解,如果各位读者发现什么错误,恳请指正,希望和大家一起进步。(●’◡’●)

题目

prim题目
prim 算法干的事情是:给定一个无向图,在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中,叫做求最小生成树。

思路

  1. st[]数组表示顶点是否已经连通,0表示没有连通,1表示已经连通,初始时st[]各个顶点的值均为0。dist[]数组表示顶点距离连通部分的距离,初始时dist[]各个顶点为INF。用sum记录最后的结果,即最小生成树的边权之和。
  2. 从源点(即1号点)开始扩充连通部分,很明显d[1]=0,遍历源点的边,更新与源点的相连的顶点距离连通部分的距离,同时将st[1=1表示源点已经在连通部分,sum加上d[1]
  3. 遍历dist[]数组,找到距离连通部分最近的顶点v。将st[v]=1表示v已经加入连通部分,遍历v的所有边,更新与v相连的顶点距离连通部分的距离,最后sum加上d[v]。而如果最后找出的顶点距离连通部分距离仍然是INF,那就说明这个图表示连通图,也就不存在最小生成树,直接跳出循环。
  4. 循环步骤3 n-1次(如果是连通图的话)就可以找到最小生成树,sum即为最小生成树的所有边权之和。

代码

#include<iostream>
#include<cstring>

using namespace std;
const int N=510,INF=0x3f3f3f3f;
int n,m;
int g[N][N],d[N],st[N];


void prim()
{
    int sum=0;
    memset(d,0x3f,sizeof d);        //初始化
    d[1]=0;
    for(int i=0;i<n;i++)        //循环n次
    {
        int t=0;
        for(int j=1;j<=n;j++)       //找出距离连通部分距离最小的顶点
            if(!st[j] and (d[j]<d[t] or !t))    
                t=j;
        st[t]=1;        //将该点加入连通部分
        sum+=d[t];      
        if(d[t]==INF)       //如果距离连通部分距离最小的顶点距离仍然是INF就说明图不连通,跳出循环。
        {
            cout<<"impossible"<<endl;
            return;
        }
        for(int j=1;j<=n;j++)       //遍历该点的所有的边,更新距离
            if(!st[j] and d[j]>g[t][j])
                d[j]=g[t][j];
    }
    cout<<sum<<endl;
}

int main()
{
    cin>>n>>m;
    memset(g,0x3f,sizeof g);
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=g[b][a]=min(g[a][b],c);     //可能有重边,我们只存最小的边权
    }
    
    prim();
    return 0;
}

总结

  • 其实现在回过头来看prim和Dijkstra(不明白Dijksta?——>传送门)这两个算法挺像的,思路可以说一模一样,都先选一个距离最短的点,只不过Dijksra是离源点,另prim离已知顶点集合,然后都是根据这个点来更新与它相连的点的距离。

拓展

聪明的你肯定发现既然primDijkstra这么像,那么prim是不是也可以像Dijkstra一样有优先队列(小根堆)来优化一下。没错,确实可以这样。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>

using namespace std;

typedef pair<int,int> PII;

const int N=510,INF=0x3f3f3f3f;
int g[N][N],d[N];
int n,m;
bool st[N];

int prim()
{   
    int ret=0,cnt=0;
    memset(d,0x3f,sizeof d);		//初始化
    priority_queue<PII,vector<PII>,greater<PII>> q;		//小根堆(优先队列)
    q.push({0,1});
    while(q.size())
    {
        auto t=q.top();		//取出距离连通部分最近的顶点
        q.pop();
        int dis=t.first, poi=t.second;		//dis表示距离,poi表示顶点编号
        if(st[poi]) continue;		//如果顶点已经在连通部分就跳过本次循环
        st[poi]=true;
        ret+=dis,cnt++;
        for(int j=1;j<=n;j++)		//遍历该点的所有的边,更新距离
        {
            if(d[j]>g[poi][j])
            {
                d[j]=g[poi][j];
                q.push({d[j],j});
            }
        }
    }
    if(cnt!=n) return INF;
    else return ret;
}



int main()
{
    cin>>n>>m;

    memset(g,0x3f,sizeof g);
    for(int i=1;i<=n;i++) g[i][i]=0;

    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        g[a][b]=g[b][a]=min(g[a][b],c);
    }

    int ret=prim();
    if(ret==INF) puts("impossible");
    else printf("%d\n",ret);

    return 0;
}

经过我的实际测试好像运行时间上并没有变快多少,这算是没什么卵用的优化🤣

感谢各位童鞋看到这里,后面我会持续更新数据结构与算法,也希望大家点点赞,我们一起进步(❁´◡`❁)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值