写在前面
由于本人实力尚浅,接触算法没多久,写这篇blog仅仅是想要提升自己对算法的理解,如果各位读者发现什么错误,恳请指正,希望和大家一起进步。(●’◡’●)
题目
prim 算法干的事情是:给定一个无向图,在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中,叫做求最小生成树。
思路
- 用
st[]
数组表示顶点是否已经连通,0表示没有连通,1表示已经连通,初始时st[]
各个顶点的值均为0。dist[]
数组表示顶点距离连通部分的距离,初始时dist[]
各个顶点为INF
。用sum
记录最后的结果,即最小生成树的边权之和。 - 从源点(即1号点)开始扩充连通部分,很明显
d[1]=0
,遍历源点的边,更新与源点的相连的顶点距离连通部分的距离,同时将st[1=1
表示源点已经在连通部分,sum
加上d[1]
。 - 遍历
dist[]
数组,找到距离连通部分最近的顶点v
。将st[v]=1
表示v
已经加入连通部分,遍历v
的所有边,更新与v
相连的顶点距离连通部分的距离,最后sum
加上d[v]
。而如果最后找出的顶点距离连通部分距离仍然是INF
,那就说明这个图表示连通图,也就不存在最小生成树,直接跳出循环。 - 循环步骤3
n-1
次(如果是连通图的话)就可以找到最小生成树,sum
即为最小生成树的所有边权之和。
代码
#include<iostream>
#include<cstring>
using namespace std;
const int N=510,INF=0x3f3f3f3f;
int n,m;
int g[N][N],d[N],st[N];
void prim()
{
int sum=0;
memset(d,0x3f,sizeof d); //初始化
d[1]=0;
for(int i=0;i<n;i++) //循环n次
{
int t=0;
for(int j=1;j<=n;j++) //找出距离连通部分距离最小的顶点
if(!st[j] and (d[j]<d[t] or !t))
t=j;
st[t]=1; //将该点加入连通部分
sum+=d[t];
if(d[t]==INF) //如果距离连通部分距离最小的顶点距离仍然是INF就说明图不连通,跳出循环。
{
cout<<"impossible"<<endl;
return;
}
for(int j=1;j<=n;j++) //遍历该点的所有的边,更新距离
if(!st[j] and d[j]>g[t][j])
d[j]=g[t][j];
}
cout<<sum<<endl;
}
int main()
{
cin>>n>>m;
memset(g,0x3f,sizeof g);
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
g[a][b]=g[b][a]=min(g[a][b],c); //可能有重边,我们只存最小的边权
}
prim();
return 0;
}
总结
- 其实现在回过头来看prim和Dijkstra(不明白Dijksta?——>传送门)这两个算法挺像的,思路可以说一模一样,都先选一个距离最短的点,只不过
Dijksra
是离源点,另prim
离已知顶点集合,然后都是根据这个点来更新与它相连的点的距离。
拓展
聪明的你肯定发现既然prim
和Dijkstra
这么像,那么prim
是不是也可以像Dijkstra
一样有优先队列(小根堆)来优化一下。没错,确实可以这样。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int> PII;
const int N=510,INF=0x3f3f3f3f;
int g[N][N],d[N];
int n,m;
bool st[N];
int prim()
{
int ret=0,cnt=0;
memset(d,0x3f,sizeof d); //初始化
priority_queue<PII,vector<PII>,greater<PII>> q; //小根堆(优先队列)
q.push({0,1});
while(q.size())
{
auto t=q.top(); //取出距离连通部分最近的顶点
q.pop();
int dis=t.first, poi=t.second; //dis表示距离,poi表示顶点编号
if(st[poi]) continue; //如果顶点已经在连通部分就跳过本次循环
st[poi]=true;
ret+=dis,cnt++;
for(int j=1;j<=n;j++) //遍历该点的所有的边,更新距离
{
if(d[j]>g[poi][j])
{
d[j]=g[poi][j];
q.push({d[j],j});
}
}
}
if(cnt!=n) return INF;
else return ret;
}
int main()
{
cin>>n>>m;
memset(g,0x3f,sizeof g);
for(int i=1;i<=n;i++) g[i][i]=0;
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
g[a][b]=g[b][a]=min(g[a][b],c);
}
int ret=prim();
if(ret==INF) puts("impossible");
else printf("%d\n",ret);
return 0;
}
经过我的实际测试好像运行时间上并没有变快多少,这算是没什么卵用的优化🤣
感谢各位童鞋看到这里,后面我会持续更新数据结构与算法,也希望大家点点赞,我们一起进步(❁´◡`❁)