目录
int dif
树上求和
给定 n 个结点的树,选择一些结点,使权值和最大
输入输出及代码
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
5
#include<bits/stdc++.h>
using namespace std;
const int N=6e3+1;
int n,x,y,fa[N],f[N][3];
inline int read() {
register int x=0,f=0;
register char ch=getchar();
while(!isdigit(ch)) f=ch=='-',ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x; }
struct node {
int val,child[N],size; } tree[N];
int find(int x) {
return fa[x]==x?x:fa[x]=find(fa[x]); }
void dp(int x) {
f[x][1]=tree[x].val,f[x][0]=0;
for(register int i=1; i<=tree[x].size; i++) {
dp(tree[x].child[i]);
f[x][1]+=f[tree[x].child[i]][0];
f[x][0]+=max(f[tree[x].child[i]][0],f[tree[x].child[i]][1]); }
return; }
int main() {
n=read();
for(register int i=1; i<=n; i++)
tree[i].val=read(),tree[i].size=1,fa[i]=i;
for(register int i=1; i<n; i++) {
x=read(),y=read();
tree[y].child[tree[y].size++]=x;
fa[x]=y; }
dp(find(1));
printf("%d",max(f[find(1)][0],f[find(1)][1]));
return 0; }
最长距离
给出一个以 1 为根的 n 个结点的树,树边有权值,求出每个结点与相距最远结点间的距离 si。
输入输出及代码
5
1 1
2 1
3 1
1 1
3
2
3
4
4
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e4+1;
int n,num,fa,val,head[N],f[N][3],maxx[N];
struct node {
int to,val,next; } a[N];
void add(int x,int y,int v) {
a[++num]=(node) {
y,v,head[x] };
head[x]=num; }
void dp1(int x) {
int res1=0,res2=0;
for(register int i=head[x]; i; i=a[i].next) {
dp1(a[i].to);
if(f[a[i].to][0]+a[i].val>res1) {
maxx[x]=a[i].to;
res2=res1;
res1=f[a[i].to][0]+a[i].val; }
else if(f[a[i].to][0]+a[i].val>res2)
res2=f[a[i].to][0]+a[i].val; }
f[x][0]=res1,f[x][1]=res2; }
void dp2(int x) {
for(register int i=head[x]; i; i=a[i].next) {
if(a[i].to==maxx[x])
f[a[i].to][2]=max(f[x][1],f[x][2])+a[i].val;
else f[a[i].to][2]=max(f[x][0],f[x][2])+a[i].val;
dp2(a[i].to); } }
int main() {
while(scanf("%d",&n)!=EOF) {
memset(head,0,sizeof(head));
num=f[1][0]=f[1][1]=f[1][2]=0;
for(register int i=2; i<=n; i++) {
scanf("%d%d",&fa,&val);
add(fa,i,val);
f[i][0]=f[i][1]=f[i][2]=0; }
dp1(1),dp2(1);
for(register int i=1; i<=n; i++) {
printf("%d\n",max(f[i][0],f[i][2])); } }
return 0; }