snday1 初等数论

本文介绍了初等数论的基础概念,包括整除理论、同余概念,阐述了传递性、同乘性和推导法则。同时讨论了欧拉函数、费马小定理和威尔逊定理等重要定理,并提及了算法如中国剩余定理及其应用。还涵盖了证明方法和一些竞赛题目。
摘要由CSDN通过智能技术生成

目录

初等数论

基础数理及符号概述

整除

同余

常见算法使用

小题摘录


本篇,将a*b记录为ab

初等数论

初等数论研究数的规律,尤其是整数性质的数学分支,以算术方法为主要研究方法

主要内容有整数整除理论、同余理论、连分数理论和某些特殊不定方程

基础数理及符号概述

lcm 最小公倍数 【】表示

gcd 最大公约数 ()表示

        gcd 辗转相除

        exgcd 求解线性不定方程ax+by=gcd(a,b)

inline void exgcd(int a,int b,int &g,int &x,int &y) {
	if(b==0) x=1,y=0,g=a;
	else {
		exgcd(b,a%b,g,y,x);
		y-=x*(a/b); } }

逆元

        对于正整数a,若存在s使as=1(mod m) 需满足(a,m)=1

费马小定理

        若 p 是质数,则对于任意整数 a 有 a^p=a (mod p)

威尔逊定理    

        若 p 是质数,则有 (p−1)!=−1 (mod p)

inv[1]=1;
for(ri i=2; i<=p; ++i) inv[i]=(p-p/i)*inv[p%i]%p;

欧拉函数

for(ri i=2; i<=n; ++i) {
	if(!vis[i]) p[++tot]=i,phi[i]=i-1;
	for(ri j=1; i*p[j]<=n; ++j) {
		vis[i*p[j]]=1;
		if(i%p[j]==0) {
			phi[i*p[j]]=phi[i]*p[j];
			break; }
		phi[i*p[j]]=phi[i]*phi[p[j]]; } }

Lucas定理

inline ll lucas(ll a,ll b) {
	if(b==0) return 1;
	return C(a%p,b%p)*lucas(a/p,b/p)%p; }

整除

传递

a|b,b|c,则a|c

a|b,a|c与a|(bx+cy)等价

同乘

a|b,则am|bm

推导

ax+by=1,a|n,b|n,则ab|n

b=qd+c,d|b与d|c等价

for(ri i=2; i<=n; ++i) {
	if(!vis[i]) p[++tot]=i;
	for(ri j=1; i*p[j]<=n; ++j) {
		vis[i*p[j]]=1;
		if(i%p[j]==0) break; } }

同余

化简

(a+b) mod c=(a mod c+b mod c) mod c

(a-b) mod c=(a mod c-b mod c+c) mod c

(ab) mod c=((a mod c)(b mod c)) mod c

(a^b) mod c=(a mod c)^b mod c

没有除法化简,类似上法化简可能会使得原本为整数的商变为小数

缩放性

a mod b=c,d!=0,则(ad) mod (bd)=cd

a mod b=c,d!=0,则(a/d) mod (b/d)=c/d

算法

中国剩余定理(即孔子问题)

        快速乘/龟速乘

扩展中国剩余定理

gcd、exgcd

证明方法

元素组成

原理模拟

小题摘录

[SDOI2010]古代猪文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值