Title: GANs for Semi-Supervised Opinion Spam Detection
URL: arxiv.org/abs/1903.0...
Code: github.com/YankunShe... (tensorflow实现)
垃圾评论是电子商务、社交媒体、旅游网站、电影评论网站等中普遍存在的问题。统计数据显示,超过90%的消费者在购买前会阅读评论。据报道,购买的可能性随着评论的增加而增加。垃圾评论制造者利用这种经济收益,提供垃圾评论,影响消费者购买决策,从而影响产品销售。识别垃圾评论是一个分类问题,评论分为垃圾评论和非垃圾评论。
识别垃圾评论的主要挑战之一是缺乏标记数据。目前只有少量标记数据附带标签。研究表明,未标记数据在与少量标记数据结合使用时可以在学习准确性方面产生相当大的改善。
1. Motivation
-
GAN受到句子长度的限制
-
标记数据的缺乏
-
计算时间
-
GAN没有用于分类任务
为了解决上述问题。
2. Contribution
-
首次将GANs用于垃圾评论检测
-
基于GAN的文本分类,以半监督的方式利用已标记和未标记