Python实现指定区域桌面变化监控并报警

在这篇博客中,我们将使用Python编程语言和一些常用的库来实现一个简单的区域监控和变化报警系统。我们将使用Tkinter库创建一个图形界面,允许用户选择监控区域,并使用OpenCV库进行图像处理和相似性比较,以检测区域内的变化,并通过播放声音进行报警。

实现效果

运行程序后可以看到一个菜单界面
在这里插入图片描述
点击开始识别按钮后可以选择你想要监控的区域
在这里插入图片描述
如图所示红色部分是点击开始按钮后拖动鼠标会显示的选择范围框,选择好区域后就开始识别该区域前后5秒内的变化。
程序还可以切换模式,可以监控摄像头画面的视频是否有变化,有变化也会报警。
程序运行后
在这里插入图片描述

准备工作

在开始之前,确保你已经安装了Python以及以下所需的库:

  • tkinter: 用于创建图形界面
  • numpy: 用于处理图像数据
  • cv2 (OpenCV): 用于图像处理和相似性比较
  • pyautogui: 用于截取屏幕图像
  • pygame: 用于播放声音
  • PIL (Python Imaging Library): 用于图像处理

你可以使用pip命令来安装这些库:

pip install tkinter numpy opencv-python pyautogui pygame pillow
选择监控区域

首先,让我们创建一个函数来选择监控区域。我们使用Tkinter库创建一个全屏的图形窗口,让用户通过鼠标点击和拖拽来选择监控区域。我们将保存选定的区域的坐标以供后续使用。

import tkinter as tk
from PIL import Image, ImageTk

start_x, start_y, end_x, end_y = None, None, None, None

def select_screen_region():
    global start_x, start_y, end_x, end_y

    def on_press(event):
        global start_x, start_y
        start_x, start_y = event.x, event.y

    def on_move(event):
        global end_x, end_y
        end_x, end_y = event.x, event.y
        canvas.coords(rect, start_x, start_y, end_x, end_y)

    def on_release(event):
        global end_x, end_y
        end_x, end_y = event.x, event.y
        canvas.coords(rect, start_x, start_y, end_x, end_y)

    root = tk.Tk()
    root.title("选择监控区域")
    root.attributes('-fullscreen', True)

    screenshot = pyautogui.screenshot()
    screenshot.save('desktop_screenshot.png', format='png')

    canvas = tk.Canvas(root, bg='white')
    canvas.pack(fill=tk.BOTH, expand=True)

    desktop_image = ImageTk.PhotoImage(file='desktop_screenshot.png')
    canvas.create_image(0, 0, anchor=tk.NW, image=desktop_image)

    rect = canvas.create_rectangle(0, 0, 0, 0, outline='red')

    canvas.bind("<ButtonPress-1>", on_press)
    canvas.bind("<B1-Motion>", on_move)
    canvas.bind("<ButtonRelease-1>", on_release)

    root.mainloop()

调用select_screen_region()函数后,会弹出一个全屏的窗口,你可以通过鼠标点击和拖拽来选择监控区域。选定区域后,关闭窗口即可。

监控区域变化

接下来,我们将创建一个函数来监控选定区域内的变化。我们将使用OpenCV库对图像进行处理,并使用相似性比较来检测区域内的变化。如果检测到较大的变化,我们将播放声音进行报警。

import cv2
import numpy as np
import threading

# 初始化pygame库
pygame.init()
pygame.mixer.init()

# 全局变量,加载MP3文件
def load_alarm_sound(file_path):
    try:
        pygame.mixer.music.load(file_path)
    except pygame.error:
        print(f"无法加载音频文件:{file_path}")

# 封装一个播放MP3警报的函数
def play_alarm():
    try:
        # 播放MP3文件
        pygame.mixer.music.play()
    except pygame.error:
        print("播放警报音频失败")

# 调用load_alarm_sound函数,加载警报音频
load_alarm_sound("警报声.mp3")

should_exit = False
is_alarm = False
prev_frame_image, current_frame_image = None, None

def monitor(data_source):
    global should_exit, is_alarm, prev_frame_image, current_frame_image

    if data_source == "screenshot":
        prev_frame = capture_screen()
    elif data_source == "camera":
        cap = cv2.VideoCapture(0)
        prev_frame = capture_video_frame(cap)

    while not should_exit:
        current_frame = None
        if data_source == "screenshot":
            current_frame = capture_screen()
        elif data_source == "camera":
            current_frame = capture_video_frame(cap)

        if current_frame is not None:
            prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
            current_gray = cv2.cvtColor(current_frame, cv2.COLOR_BGR2GRAY)
            similarity = ssim(prev_gray, current_gray)

            threshold = 0.95
            if similarity < threshold and not is_alarm:
                print("检测到较大变化,进行报警!")
                is_alarm = True
                play_alarm()

                # 保存变化前后的照片
                prev_frame_image = prev_frame.copy()
                current_frame_image = current_frame.copy()

                # 在5秒后重置is_alarm标志
                threading.Timer(5, reset_alarm_flag).start()
            else:
                print("没有变化")

        # 更新前一帧图像
        prev_frame = current_frame

        time.sleep(5)  # 等待5秒后再获取下一帧

    # 释放资源
    if data_source == "camera":
        cap.release()
    cv2.destroyAllWindows()

def start_recognition():
    global should_exit
    should_exit = False
    print("开始监控")
    th_monitor = threading.Thread(target=monitor, args=("screenshot",))
    th_monitor.daemon = True
    th_monitor.start()

def end_program():
    global should_exit
    should_exit = True
    print("结束程序")
    sys.exit(1)

现在,我们已经准备好了选择监控区域和监控区域变化的功能。你可以将它们集成到完整的应用程序中,例如创建一个Tkinter界面,提供开始监控和结束程序的按钮。

import sys
import tkinter as tk
import time
import cv2
import numpy as np
import pyautogui
import pygame
from skimage.metrics import structural_similarity as ssim
from PIL import Image, ImageTk

# ... 在此添加上面的选择监控区域和监控区域变化的函数 ...

# 创建主窗口
root = tk.Tk()
root.title("区域监控和变化报警")

# 添加按钮
btn_start = tk.Button(root, text="开始监控", command=start_recognition)
btn_end = tk.Button(root, text="结束程序", command=end_program)

# 使用pack布局并设置side参数为LEFT实现横向排列
btn_start.pack(side=tk.LEFT, padx=10, pady=10)
btn_end.pack(side=tk.LEFT, padx=10, pady=10)

# 进入事件循环
root.mainloop()

这样,我们就实现了一个简单的区域监控和变化报警系统。当你点击"开始监控"按钮后,可以选择监控区域,然后程序会持续监测该区域的变化,并在检测到较大变化时进行报警。点击"结束程序"按钮后,程序将退出。希望这篇博客对你有所帮助,欢迎探索更多有趣的Python项目!

Python火焰目标区域检测是一种基于计算机视觉技术的方法,用于检测图像或视频中的火焰目标。这种技术可以应用于火灾预警、视频监控等领域。下面我将简要介绍Python火焰目标区域检测的实现步骤。 首先,我们需要获取输入图像或视频,并将其转换为灰度图像。接下来,我们可以使用Python中的OpenCV库来进行图像处理和分析。 在火焰目标区域检测中,我们可以采用背景减法算法。首先,我们需要提取出图像的背景。可以通过使用平均法或高斯混合模型等方法来建立图像序列的背景模型。 然后,我们需要对每一帧的图像进行背景减法处理,将图像减去背景模型,得到一个差分图像。接着,我们可以进行二值化处理,将差分图像转换为黑白二值图像。 接下来,我们可以通过对二值图像进行形态学处理,如腐蚀和膨胀操作,来去除噪声和填充小区域。 最后,我们可以使用连通区域提取方法,找到二值图像中的火焰目标区域。可以使用OpenCV中的findContours函数来实现这一步骤。 在找到火焰目标区域之后,我们可以对其进行进一步的分析和处理,如计算火焰的面积、颜色等信息,或者进行火焰预警和报警。 总而言之,Python火焰目标区域检测是一种基于图像处理和计算机视觉技术的方法,通过背景减法、二值化、形态学处理和连通区域提取等步骤,可以实现对火焰目标区域的快速检测和提取。这种技术可以为火灾预警和视频监控等领域提供有效的解决方案。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值