- 博客(162)
- 资源 (1)
- 收藏
- 关注
原创 ansible详细介绍和具体步骤
Ansible是一款开源的自动化工具,旨在简化IT操作的复杂性。它由Michael DeHaan创建,并于2012年发布,随后在2015年被Red Hat收购。Ansible的核心理念是“简单即美”,它通过使用YAML(Yet Another Markup Language)作为其配置文件的格式,使得即使是非技术人员也能轻松上手。Ansible通过SSH协议与远程主机通信,这意味着你不需要在目标主机上安装任何额外的代理或软件,这大大简化了部署和维护的复杂性。Ansible的工作原理是通过。
2024-10-29 15:10:29 908
原创 5分钟了解docker的Swarm机制
在容器化技术的浪潮中,Docker无疑是最为耀眼的明星之一。而作为Docker生态系统中的重要组成部分,Swarm框架则扮演着至关重要的角色。Swarm,顾名思义,就是“群”的意思,它是一个开源的多agent编排框架,专门用于管理和编排Docker容器集群。Swarm的核心理念是将多个Docker主机(即节点)组织成一个集群,从而实现对容器的高效管理和调度。这个集群中的每个节点都可以是管理节点(Manager Node)或工作节点(Worker Node),它们共同协作,确保容器能够在集群中平稳运行。
2024-10-12 15:21:19 852
原创 如何用Python监控本股市的方法
量化交易,顾名思义,是通过数学模型和计算机算法来进行交易决策的一种交易方式。它不仅仅是简单的自动化交易,而是基于大量的历史数据和统计分析,通过算法来识别市场中的交易机会,并自动执行交易策略。量化交易的核心在于“量化”,即通过数据和模型来量化市场行为和交易机会。布林线(Bollinger Bands)是一种广泛使用的技术分析工具,由约翰·布林格(John Bollinger)在1980年代初开发。布林线策略的核心思想是通过计算股票价格的标准差来确定价格波动的上下限,从而判断股票的买入和卖出时机。
2024-09-30 22:03:14 1382
原创 Python量化监控A股的方法和实操
量化交易,顾名思义,就是利用数学模型和计算机程序来进行金融市场的交易。它通过分析大量的历史数据,找出市场中的规律和模式,然后根据这些规律制定出交易策略。量化交易的核心在于“量化”,即用数据和算法来代替人的主观判断,从而实现更加客观、系统和高效的交易。在本文中,我们详细探讨了如何使用Python进行A股的量化监控和实操。
2024-09-30 10:50:23 1578
原创 一起了解AI的发展历程和AGI的未来展望
尽管现代AI系统在特定任务上表现优异,但它们缺乏人类智能的灵活性和广泛性。通用人工智能(AGI)是指能够像人一样在多种任务上展现出智能的系统。实现AGI需要解决的问题包括但不限于理解、推理、规划、学习、交流等多个方面。AGI的目标是创建一种能够适应各种环境和任务的智能系统,而不仅仅是擅长某一特定领域。从AI到大模型再到AGI,这是一个持续演进的过程,每一步都凝聚着科学家们的智慧和努力。未来,随着技术的进步和社会各界的合作,我们有理由相信,人类将能够创造出更加先进且有益于社会的智能系统。
2024-09-30 10:08:05 1055
原创 Python调用通义千问qwen2.5模型步骤
Qwen2.5是阿里云推出的一款超大规模语言模型,它基于阿里巴巴达摩院在自然语言处理领域的研究和积累。Qwen2.5系列模型采用了更先进的算法和优化的模型结构,能够更准确地理解和生成自然语言、代码、表格等文本。除了基本的文本生成和问答能力,Qwen2.5还支持更多的定制化需求,可以针对不同场景和应用进行扩展和定制,提供更加个性化的服务和解决方案。函数调用是一种强大的技术,它允许大型语言模型(LLMs)与外部函数进行交互。
2024-09-30 09:46:54 1716
原创 openvino快速指南和实践
OpenVINO™(Open Visual Inference and Neural Network Optimization)是由英特尔开发的一款开源工具套件,旨在加速深度学习模型的推理过程。OpenVINO的名字中,“Open”代表其开源特性,“Visual Inference”强调其在视觉推理方面的应用,而“Neural Network Optimization”则突出了其对神经网络优化的能力。OpenVINO的诞生背景可以追溯到深度学习技术的快速发展。
2024-09-29 17:45:04 1398
原创 动手尝试本地私人电脑部署大模型做私人助手详细教程
在开源社区中,有许多优秀的大模型可供选择。这些模型在不同的任务和场景中表现出色,各有千秋。TTS(Text-to-Speech)音色是AI助手的重要组成部分。通过自定义TTS音色,你可以让私人助手更加个性化和人性化。本地部署大模型作为一种新兴的技术趋势,具有显著的优势和潜力。通过不断的技术创新和优化,本地部署将变得更加便捷、高效和灵活,为用户提供更加个性化和定制化的服务。未来,随着技术的进一步发展,本地部署大模型将在更多领域得到广泛应用,成为推动人工智能技术发展的重要力量。
2024-09-29 16:44:22 1745
原创 VSCode集成Python环境搭建配置详细步骤
如果你需要自定义安装路径或选择特定的组件,可以点击“Customize installation”选项。通常情况下,使用默认设置即可。
2024-09-20 16:24:05 773
原创 python协程,线程,进程详细解释和使用
协程(Coroutine)是一种用户态的轻量级线程,它允许执行被挂起与恢复。与传统的子程序(Subroutine)不同,协程可以在执行过程中暂停,并在之后从暂停点继续执行,而不是从程序的开头重新开始。这种特性使得协程非常适合处理需要等待外部事件(如I/O操作)的任务。协程的概念最早出现在1963年,由Melvin Conway提出。然而,直到近年来,随着异步编程的兴起,协程才逐渐受到广泛关注。Python在3.4版本中引入了asyncio模块,正式支持协程,并在后续版本中不断完善。在计算机科学中,线程。
2024-09-20 15:51:21 1846
原创 开源集成开发环境搭建之VSCode启动Jupyter Notebook
在VSCode中使用Jupyter Notebook时,掌握一些常用的快捷键可以大大提高你的工作效率。特别是在命令状态下,这些快捷键能够帮助你快速完成各种操作,而不需要频繁地使用鼠标。下面是一些常用的快捷键介绍,让你在VSCode中玩转Jupyter Notebook更加得心应手。掌握这些常用的快捷键,可以让你在使用VSCode中的Jupyter Notebook时更加高效。无论是运行代码、插入单元格,还是查看变量和输出结果,这些快捷键都能帮助你快速完成各种操作。希望这些快捷键能成为你日常编程中的得力助手。
2024-09-19 14:28:57 637
原创 开源集成开发环境搭建之VSCode安装部署教程
在编程的世界里,IDE(Integrated Development Environment,集成开发环境)是开发者们的得力助手。它不仅仅是一个简单的文本编辑器,而是一个集成了代码编辑、编译、调试、版本控制等多种功能于一体的强大工具。IDE的存在,让开发者能够在一个统一的界面中完成从代码编写到项目部署的整个流程,极大地提高了开发效率。想象一下,如果没有IDE,开发者可能需要在多个工具之间来回切换:用一个编辑器写代码,用另一个工具编译代码,再用第三个工具进行调试。这样的工作流程不仅繁琐,还容易出错。
2024-09-19 13:53:55 800
原创 LLM常见应用领域
在人工智能(AI)的浩瀚星空中,大语言模型(Large Language Models,简称LLM)无疑是最耀眼的星辰之一。这些模型,如GPT-3、BERT和T5,以其惊人的语言理解和生成能力,正在改变我们与世界互动的方式。那么,究竟什么是LLM呢?大语言模型是一种基于深度学习的模型,专门设计用于理解和生成人类语言。它们通过分析大量的文本数据,学习语言的结构、语法、语义以及上下文关系。这些模型通常由数亿甚至数十亿个参数组成,能够处理复杂的语言任务,如文本生成、翻译、问答和情感分析。
2024-09-19 11:03:00 343
原创 ClickHouse在AI领域的结合应用
通过其强大的数据处理能力和高效的查询性能,ClickHouse为AI技术的应用提供了强有力的支持,帮助企业提升数据处理效率,优化业务流程,提升竞争力。ClickHouse作为一种高性能的列式数据库,能够提供实时的数据处理和分析能力,与AI技术结合,可以实现更高效的数据处理和分析,从而提高AI系统的性能和准确性。无论是高性能的交互分析、灵活的半结构化数据存储,还是与AI引擎的无缝集成,ClickHouse都为用户提供了强大的工具和平台,助力其在数据驱动的智能时代中取得成功。风险管理是金融行业的核心业务之一。
2024-09-18 17:35:46 2134
原创 国产开源大语言模型优劣大盘点
7B Base版本适合资源有限的环境和快速原型设计,13B Base版本在处理复杂任务和多语言支持方面表现更佳,经过PPO训练的Chat版本在对话生成方面具有显著优势,而4bits量化版本则适合资源受限和低功耗的应用场景。百度文心一言(ERNIE Bot)是百度推出的新一代知识增强大语言模型,其核心技术基于Transformer架构,通过大规模预训练和微调,能够理解和生成自然语言文本。阿里巴巴通义大模型是阿里云推出的自然语言处理模型,具备自然语言生成、理解和推理能力,支持多轮对话和连续对话。
2024-09-18 11:06:59 1375
原创 LLM的工作原理详解
在自然语言处理(NLP)中,token是指文本的最小单位。它可以是一个单词、一个字符,甚至是一个子词(subword)。例如,句子“我喜欢学习新知识”可以被token化为:“我”,“喜欢”,“学习”,“新”,“知识”。Tokenization是NLP中的第一步,它将连续的文本分割成离散的token。这些token随后会被用于模型的输入,以便模型能够理解和处理文本。Transformer模型在摘要生成任务中能够自动提取文本中的关键信息,生成简洁、准确的摘要。LLM的发展之路充满了机遇与挑战。
2024-09-14 17:34:13 447
原创 机器学习算法详细解读和python实现
机器学习,这个听起来高大上的名词,其实离我们的生活并不遥远。想象一下,当你在淘宝上浏览商品时,系统是如何推荐你可能感兴趣的商品的?这些都离不开机器学习的魔力。机器学习,简而言之,就是让计算机通过数据学习,而不是通过明确的编程指令来执行任务。它是一种人工智能的分支,旨在使计算机能够从数据中“学习”并做出预测或决策。线性回归作为一种基础且强大的机器学习算法,广泛应用于各种预测任务中。通过最小二乘法,我们可以有效地估计模型参数,并通过Python中的库轻松实现线性回归模型。
2024-09-14 16:37:49 2300
原创 走进LLM世界之LLM历史与发展
大型语言模型(LLM)是指那些拥有数十亿甚至数千亿参数的深度学习模型,专门设计用于理解和生成人类语言。这些模型通过大量的文本数据进行训练,能够捕捉语言的复杂性和细微差别。LLM的核心原理在于利用统计方法和机器学习技术,从海量数据中学习语言的规律和模式。数据输入:模型接收大量的文本数据作为输入。学习过程:通过深度学习算法,模型学习文本中的语言模式和结构。生成输出:模型能够根据学习到的知识生成新的文本或回答问题。
2024-09-14 14:48:48 528
原创 openai最新模型o1全面解读
OpenAI的o1模型在多个领域中展现了其强大的应用潜力。无论是在科学研究、编码和数学问题的解决、医疗研究、物理学研究还是软件开发中,o1模型都能提供有力的支持,帮助人们更好地理解和解决复杂的问题。随着技术的不断进步,o1模型的应用场景将会越来越广泛,为各个领域带来更多的创新和突破。## OpenAI o1模型的未来发展。
2024-09-13 17:15:39 2298
原创 2024年还能干外包吗?
外包行业,简单来说,就是企业将某些业务或职能外包给第三方服务提供商,以降低成本、提高效率或专注于核心业务。这个行业涵盖了从IT服务、客户服务、人力资源到财务管理等多个领域。外包不仅仅是简单的任务转移,它涉及到复杂的合同管理、质量控制和风险管理。在IT领域,外包通常包括软件开发、系统维护、数据分析等。随着技术的进步,外包的范围也在不断扩大,包括云计算、大数据、人工智能等新兴技术的服务外包。
2024-09-12 17:00:53 1044
原创 大模型微调j技术:GaLore、BAdam、Adam-mini、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA的介绍
如果您使用自定义数据集,请确保更新文件,以确保 LLaMAFactory 能够正确识别和加载您的数据集。LLaMA-Factory 项目通过支持多种模型、集成方法和精度,以及提供详细的软硬件依赖信息,为用户提供了一个强大且灵活的微调平台。无论是进行传统的语言模型微调,还是进行多模态模型的复杂任务,LLaMA-Factory 都能够满足用户的需求,帮助用户在不同的应用场景中取得优异的性能。## 使用案例与社区贡献。
2024-09-12 16:24:24 998 1
原创 浅谈AI伦理与社会的影响
在AI技术的开发和应用过程中,不同背景的人才可以带来不同的视角和方法,从而帮助组织更好地理解和应对不同群体的需求和挑战。AI技术的广泛应用,尤其是在决策支持系统中的应用,可能导致数据偏见和不公平现象的放大,进而影响社会的公平性和正义性。例如,在AI技术的开发和应用过程中,不同背景的人才可以带来不同的视角和方法,从而帮助社会更好地理解和应对不同群体的需求和挑战。总之,AI技术的发展为社会带来了巨大的机遇和挑战,如何在技术进步的同时确保社会公平,是一个需要全社会共同努力的问题。## AI重塑社会分工。
2024-09-12 14:33:05 1010
原创 机器学习,深度学习,AGI,AI的概念和区别
人工智能(AI)是指通过计算机系统模拟人类智能的技术和科学。AI的目标是创建能够执行通常需要人类智能的任务的系统,如视觉识别、语音识别、决策制定和语言翻译。AI的核心在于其能够处理和分析大量数据,从中提取有用的信息,并根据这些信息做出决策或预测。AI的发展可以追溯到20世纪50年代,当时科学家们开始探索如何使机器能够执行复杂的任务。随着计算能力的提升和数据量的增加,AI技术得到了快速发展。现代AI系统通常依赖于机器学习(Machine Learning)和深度学习。
2024-09-11 16:53:04 1662
原创 大模型推理引擎vllm,sglang,transformer,exllama详细介绍和区别
在本文中,我们详细介绍了四种大模型推理引擎:vLLM、SG-Lang、Transformer和ExLlama。每种引擎都有其独特的技术特点、应用场景和优缺点。
2024-09-10 14:42:43 2016
原创 用Python编写桌面应用GUI的几种框架对比
在现代软件开发中,图形用户界面(GUI)是用户与应用程序交互的主要方式。一个直观、易用的GUI可以极大地提升用户体验,使得应用程序更加受欢迎和易于使用。Python作为一种广泛使用的编程语言,其强大的生态系统和丰富的库支持使得开发者能够轻松创建功能丰富的GUI应用程序。用户体验:良好的GUI设计可以显著提升用户体验,使得用户能够更直观地操作应用程序。开发效率:Python的简洁语法和丰富的库支持可以大大提高开发效率,减少开发时间和成本。跨平台支持。
2024-09-10 10:33:30 2567
原创 pandoc强大的开源文档处理框架详细介绍
Pandoc是一个功能强大的开源文档转换工具,广泛应用于学术界、技术文档处理、博客写作等多个领域。其主要功能是将一种标记格式转换为另一种标记格式,支持多达28种不同的文档格式。多格式支持:Pandoc支持多种输入和输出格式,包括Markdown、HTML、LaTeX、Microsoft Word 的 DOCX、EPUB、PDF等。高度自定义:Pandoc不仅支持基础的文档转换,还可以通过 Lua、Python 等脚本语言实现高度自定义的文档转换。丰富的扩展语法。
2024-09-09 12:23:22 1272
原创 python读取excel数据和提取图片
通过以上步骤,你应该已经成功安装了pandasopenpyxlPillow和numpy等必要的库。这些库将帮助你在Python中高效地读取和处理Excel文件,包括提取和处理其中的图片。在接下来的章节中,我们将详细介绍如何使用这些库来读取Excel文件中的数据和图片。## 3. 读取Excel文件在数据处理和分析的过程中,Excel文件是一种常见的数据存储格式。Python提供了多种库来读取和处理Excel文件,其中最常用的包括openpyxl和pandas。
2024-09-06 11:33:41 1891
原创 python监控桌面应用窗口并操作
在Python中,有多个库可以帮助我们实现桌面应用窗口的监控和操作。这里我们重点介绍PyAutoGUI、pywin32和Pywinauto这三个库。通过以上步骤,我们已经完成了Python监控和操作Windows桌面应用窗口的环境配置。这包括安装必要的Python库和配置开发环境。接下来,我们可以开始编写代码,实现窗口的监控和操作功能。在本指南中,我们详细探讨了如何使用Python监控和操作桌面应用窗口。
2024-09-05 11:32:43 2317
原创 llamafactory微调llama3.1
LLaMA-Factory是一个专为微调大型语言模型(LLMs)设计的强大工具,它极大地简化了微调过程,使得即使是非专业人士也能轻松地对模型进行定制化调整。用户友好的界面:LLaMA-Factory提供了一个直观的Web界面,用户可以通过简单的拖放操作和参数调整来配置微调任务,无需编写复杂的代码。支持多种模型:该工具支持对超过100种不同的预训练模型进行微调,包括但不限于LLaMA、Mistral、Falcon等流行模型。高效的微调算法。
2024-09-05 09:55:29 1334
原创 快速了解开源RAG-UI工具“kotaemon”
Kotaemon是一款基于技术的开源工具,它通过结合信息检索和语言生成技术,实现了与文档的交互式对话。RAG技术是一种先进的自然语言处理技术,它通过检索增强生成模型的能力,使得模型能够在生成回答时参考大量的外部知识源。这种技术的核心优势在于它能够处理复杂的查询,并提供准确、上下文相关的回答。RAG技术的创新之处在于其能够无缝地集成检索和生成两个过程,使得模型在处理用户查询时,不仅能够利用预训练的语言模型生成回答,还能够动态地从外部知识库中检索相关信息,从而提高回答的准确性和相关性。
2024-09-02 16:49:41 1756
原创 青龙:定时任务管理平台介绍
青龙定时任务管理平台是一个功能强大的自动化任务调度系统,它允许用户通过简单的配置和命令来管理各种定时任务。任务调度:支持创建、编辑、删除定时任务,并能够设置任务的执行时间、频率和优先级。脚本管理:用户可以上传和管理多种编程语言编写的脚本,如Python3、JavaScript、Shell和Typescript。在线管理:提供一个直观的Web界面,用户可以通过该界面进行任务的添加、修改和监控。环境变量管理:支持设置和管理环境变量,这些变量可以在脚本中使用,增加了脚本的灵活性和安全性。日志查看。
2024-09-02 16:31:24 1650
原创 如何让大模型学会自我反思
目前,针对大型语言模型的自我反思能力,研究者们已经提出了多种策略和技术。基于反馈的方法:这类方法依赖于外部反馈来指导模型的自我反思过程。例如,Reflexion和Self-Refine等策略通过外部评估来调整模型的输出。然而,这些方法在缺乏外部反馈的情况下效果不佳,且容易受到反馈质量的影响。自我评估方法:这类方法鼓励模型进行自我评估,通过内部机制来识别和纠正错误。例如,一些研究通过引入自我评估模块来增强模型的自我反思能力。然而,这些方法往往存在过度自信或评估不一致的问题。自我对比方法。
2024-08-30 18:05:13 1420 1
原创 效果媲美GPT4V的多模态大型语言模型MiniCPM-V-2_6详细介绍
是由nuoan开发的一款达到GPT-4V级别的多模态大型语言模型(MLLM)。该模型专为手机上的单图像、多图像和视频处理设计,旨在提供高效、准确的多模态内容理解与生成能力。随着移动设备的普及和计算能力的提升,用户对于在移动端进行复杂图像和视频处理的需求日益增长。MiniCPM-V-2.6的推出,正是为了满足这一需求,提供了一种在移动设备上实现高性能多模态处理的解决方案。模型可以对长视频进行快速的内容摘要,提取出视频中的关键信息和重要片段。
2024-08-29 15:13:10 1442
原创 快速了解FlashInfer
FlashInfer是一个专为大型语言模型(LLM)服务设计的高性能GPU内核库。它通过优化注意力机制和提供多种API支持,加速LLM服务的性能。全面的注意力内核:提供高效的注意力计算内核,支持多种注意力机制的实现。这些内核能够在GPU上高效执行,显著提升LLM的推理速度。优化共享前缀批处理解码:通过优化解码过程中的共享前缀批处理,提高解码效率。这种优化技术减少了计算和内存开销,使得批处理解码更加高效。加速压缩/量化KV缓存的注意力:通过压缩和量化KV缓存,减少内存占用,加速注意力计算。
2024-08-29 14:45:28 1402
原创 又一个强大的开源编辑器Vditor
Vditor是一款功能强大的浏览器端 Markdown 编辑器,它提供了多种编辑模式和丰富的功能,使得用户可以高效地进行文本编辑和格式化。所见即所得(WYSIWYG):用户在编辑时可以直接看到最终的渲染效果,类似于使用富文本编辑器,但支持 Markdown 语法。即时渲染(IR):类似于 Typora 的渲染模式,用户在输入 Markdown 文本时,编辑器会实时将其渲染为 HTML 格式,提供即时的视觉反馈。分屏预览(SV)
2024-08-28 15:04:10 1391
原创 metagpt指南浅谈
MetaGPT是一个创新的多智能体框架,旨在通过模拟和优化多智能体系统的行为来处理复杂的软件开发任务。该框架的核心优势在于其能够通过智能体之间的协作和交互,高效地解决单一智能体难以独立完成的复杂问题。MetaGPT支持多种智能体角色的定义和配置,包括但不限于产品经理、架构师、项目经理和工程师等,这些角色共同协作,以实现软件开发项目的各个阶段。产品经理:负责定义产品需求和目标。架构师:负责设计系统的整体架构。项目经理:负责项目的进度管理和资源协调。工程师:负责具体的编码和实现工作。
2024-08-27 11:01:40 1125
原创 浅谈:工控机与AI的结合点有哪些
上述代码展示了如何使用Python中的库实现基本的语音识别功能。在实际应用中,这一技术需要与工控机的控制系统集成,以实现对工业设备的语音控制。
2024-08-19 14:24:50 881
原创 streamlit下使用async报错:NotImplementedError 的解决方法
从错误信息来看,问题出在asyncio的子进程创建过程中,具体是在调用asyncio.create_subprocess_exec时触发的NotImplementedError。这通常是因为某些平台或环境不支持某些子进程操作。在Windows上,asyncio的默认事件循环策略是SelectorEventLoop,它不支持子进程操作。你需要切换到ProactorEventLoop,这是Windows上支持子进程的事件循环策略。在应用的开始部分切换事件循环策略为ProactorEventLoop。
2024-08-16 00:48:25 244
原创 使用Vue3和Three.js实现后端坐标点轨迹播放
在现代Web开发中,前端技术的快速发展为开发者提供了丰富的工具和库,以实现复杂且高性能的Web应用程序。Vue.js,作为一个渐进式JavaScript框架,因其易用性和灵活性,在构建用户界面方面广受欢迎。而Three.js,作为一个基于WebGL的3D图形库,使得在浏览器中创建和显示3D图形变得更加容易和高效。将Vue.js与Three.js集成,可以充分利用两者的优势,构建出既具有良好用户界面又具备复杂3D图形渲染能力的Web应用。
2024-08-14 14:57:39 542
原创 Three.js详细指南
Three.js是一款基于WebGL的开源JavaScript库,由Ricardo Cabello(也称为Mr.doob)于2010年创建。它旨在简化在网页上创建和显示3D图形的过程,使得即使是没有深厚图形学背景的开发者也能轻松上手。Three.js通过提供一系列高级API,隐藏了WebGL的复杂性,使得开发者可以专注于创意和逻辑实现,而不是底层的图形渲染细节。Three.js的主要特点包括:易用性:提供简洁的API,使得创建3D场景变得简单快捷。跨平台:支持所有现代浏览器,包括移动设备。丰富的功能。
2024-08-14 14:05:02 1085
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人