概率论与数理统计-第17篇:时间序列的预测与应用
一、时间序列预测的重要性与目标
在当今数据驱动的时代,时间序列预测在众多领域都扮演着关键角色。无论是金融领域中股票价格、汇率的走势预测,以帮助投资者做出决策;还是供应链管理中对产品需求的预估,以优化库存水平和生产计划;亦或是能源领域对电力消耗的预测,以合理调配能源资源。时间序列预测的目标是通过对历史数据的分析和建模,挖掘数据中的规律和趋势,从而对未来的取值进行准确预估,为各行业的规划、决策提供有力支持。
二、时间序列预测的方法与步骤
1. 数据收集与预处理
首先,需要收集相关的时间序列数据。这些数据应具有足够的长度和代表性,以反映出时间序列的特征。收集完成后,进行数据预处理,包括数据清洗(去除缺失值、异常值等)、数据变换(如对数变换、标准化等),以提高数据质量和模型的适用性。
2. 模型选择与参数估计
根据时间序列的特点(如平稳性、趋势、季节性等)选择合适的预测模型,如前文介绍的ARIMA、指数平滑法等。对于选定的模型,需要估计其参数。以ARIMA(p, d, q)模型为例,可以使用最大似然估计、最小