动态规划基础

文章介绍了使用递归算法计算兔子数列的优缺点,指出在大数据规模下递归的效率问题,并提出了通过动态规划和记忆化搜索进行优化的方案。给出了递归、记忆化搜索及动态规划的代码实现,并讨论了动态规划的核心概念和应用,包括背包问题、最长不降子序列等典型问题。
摘要由CSDN通过智能技术生成

1.用递归算法求兔子数列

1.1 优点:程序代码简洁明了

1.2 缺点:当数据规模较大时运算时间很长,原因是有重复运算

1.3 优化:用动态规划算法进行优化(记忆化搜索)

 1.4 代码

#include <bits/stdc++.h>
using namespace std;
int f (int n)
{
	return n<=2?1:f(n-1)+f(n-2); //三目运算
}
int main()
{
	cout<<f(20);
	return 0;
}

2.记忆化搜索求兔子数列

  代码

注:记忆化搜索就是用额外的空间来换取时间。

#include <bits/stdc++.h>
using namespace std;
int a[1000] ;
int f(int n);
int main()
{
	cout<<f(60);
	return 0;
}
int f(int n)
{
	if(a[n]==0) //没有计算过才计算 
	{
		if(n<=2)
		{
			a[n]=1;
	    } 
	    else
	    {
	    	a[n]=f(n-1)+f(n-2);
		}
	}
	return a[n];
}

3.动态规划求兔子数列

3.1 动态规划是一步一总结,步步为营,稳扎稳打。

3.2 动态规划的关键是递推公式,也称之为状态转移方程,非常难推出

3.3 动态规划的代码很短,但 是非常抽象,非常难理解。

3.4 常用名词:阶段,阶段变量,状态,状态变量

3.5 代码

#include <bits/stdc++.h>
using namespace std;
long long f[1000];
int main()
{
	int n=100;
	f[1]=f[2]=1;
	for(int i=3;i<=n;i++)
	{
		f[i]=f[i-1]+f[i-2];
	}
	cout<<f[n];
	return 0;
}

4.动态规划的主要问题类型:、

4.1 背包问题:01背包(每种物品只有一个),完全背包(每种物品有无数个),多重背包(每种物品有若干个个),二维背包(限制因素有两个,比如体积和重量)。(注:背包问题的三要素:耗费,收益和限制)

4.2 最长不降子序列

4.3 最长公共子序列

4.4 区间动态规划

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值