机器学习lr复习点

lr主要推导https://blog.csdn.net/ligang_csdn/article/details/53838743

损失函数:

\begin{align}J(\theta) = -\frac{1}{m} \left[ \sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)})) \right]\end{align}

为何不用最小二乘法

是否要用最小二乘法取决于在所有未知数中的残差是否为线性

最大似然

将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法

随机梯度下降代码

https://www.cnblogs.com/21207-iHome/p/5222993.html

批量梯度下降是所有的

是在权值更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个训练样例来更新的

牛顿法

讲的很详细,两个结合着看就足够了

https://zhuanlan.zhihu.com/p/37588590

https://blog.csdn.net/linolzhang/article/details/60151623

 雅克比矩阵,对应一阶偏导数。

 H 为 Hessian矩阵,对应二阶偏导数

拟牛顿法的思想是不计算目标函数的Hessian矩阵然后求逆矩阵,而是通过其他手段得到Hessian矩阵或其逆矩阵的近似矩阵。具体做法是构造一个近似Hessian矩阵或其逆矩阵的正定对称矩阵,用该矩阵进行牛顿法的迭代。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>