素数的充要条件的证明 (试证明(p-1)!模p的余数是p-1的充要条件是p为质数)

p=2,命题显然成立;   
p=3,命题显然成立;   
对于奇质数p>=5,令a∈A={2,3,4.....p-2}, (其内每个元素都与p互质)
则B={a,2a,3a,.....,(p-1)a}中不会有对于除数p同余的两个数;
事实上αa,βa∈B,αa≡βa(mod p),则a|α-β|能被p整除,而a|α-β|∈B,B中的元素不可能被p除尽。
于是B中被p除得的余数形成集合{1,2,3,...,p-1}.  
 
假设B中被p除余一的数是γa:   
一若γ=1,则γa=a,它被p除余a,又因为a∈A不等于1,所以γ=1不成立;   
二若γ=p-1,则γa=(p-1)a,它被p除余p-a,又因为a∈A不等于p-1,所以γ=p-1不成立;   
三若γ=a,则γa=a*a,由于a*a≡1(mod p),故应有a*a-1=(a+1)(a-1)≡0(mod p),
这只能是a=1或a=p-1,此与a∈A矛盾,故不成立;   
有一二三知γ≠a且a,γ∈A。   
a不同时,γ也相异;
若a1≠a2, a1,a2∈A,且γa1≡γa2≡1(mod p),因,γa1,γa2∈B,而B中的元素关于mod p不同余,可见a1≠a2,则γ1≠γ2。   
即A中的每一个a均可找到与其配对的y,γ∈A使ay≡1(mod p),又,a不同时,γ也相异。   
因此,A中的偶数个(p-3个)元素可以分成(p-3)/2个二元组(a,y),每个二元组都满足ay≡1(mod p),   
∴ 1×2×3×4....(p-2)≡1(mod p)   p-1≡-1(mod p)   
∴ (p-1)!≡-1≡p-1(mod p)
若p不是质数,那么一定存在一个约数k,1<k<p-1
将p写为p=km, 1<m<p-1
(p-1)!≡k*(p-1)!/k (mod p) = k*(p-1)!/k (mod km) = (p-1)!/k (mod m)
1<k<p-1, ∴(p-1)!内含有k, ∴(p-1)!/k为整数
1<m<p-1, ∴(p-1)!/k (mod m)<m<p-1
命题不成立。
综上,p为质数是充要条件

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
首先,RSA密码系统的加密公式为: $C \equiv M^e \pmod{n}$ 其中,$M$为明文,$C$为密文,$e$为公钥中的指数,$n$为公钥中的数。 当明文$M = 0$时,根据加密公式,有: $C \equiv 0^e \equiv 0 \pmod{n}$ 因此,加密后的密文等于明文本身。 当明文$M = 1$时,根据加密公式,有: $C \equiv 1^e \equiv 1 \pmod{n}$ 同样地,加密后的密文等于明文本身。 当明文$M = n-1$时,根据加密公式,有: $C \equiv (n-1)^e \pmod{n}$ 此时,我们需要根据欧拉定理来进行推导。欧拉定理指出,如果$n$和$a$互质,那么$a^{\varphi(n)} \equiv 1 \pmod{n}$,其中$\varphi(n)$为欧拉函数,表示小于$n$且与$n$互质的正整数个数。 假设$\gcd(n-1,e)=1$,那么根据欧拉定理,有: $(n-1)^{\varphi(n)} \equiv 1 \pmod{n}$ 又因为$n$为质数,所以有$\varphi(n)=n-1$,于是: $(n-1)^{n-1} \equiv 1 \pmod{n}$ 接下来,我们可以将$(n-1)^e$展开,得到: $(n-1)^e = (n-1)^{k(n-1)+(e \bmod (n-1))}$ 其中$k$为一个正整数,$e \bmod (n-1)$表示$e$除以$n-1$的余数。由于$n$是质数,所以$n-1$也是偶数,于是我们可以将上式写成: $(n-1)^e = ((n-1)^2)^{\frac{k(n-1)}{2}} \cdot (n-1)^{e \bmod (n-1)}$ 接下来,我们需要证明$(n-1)^2 \equiv 1 \pmod{n}$。由于$n$是质数,所以$n-1$是偶数,可以将$n-1$写成$2t$的形式,于是有: $(n-1)^2 = (2t)^2 = 4t^2 \equiv 1 \pmod{n}$ 因此,$(n-1)^2 \equiv 1 \pmod{n}$。 回到$(n-1)^e$的展开式,我们有: $(n-1)^e \equiv ((n-1)^2)^{\frac{k(n-1)}{2}} \cdot (n-1)^{e \bmod (n-1)} \equiv 1^{\frac{k(n-1)}{2}} \cdot (n-1)^{e \bmod (n-1)} \equiv n-1 \pmod{n}$ 因此,当明文$M=n-1$且$\gcd(n-1,e)=1$时,加密后的密文等于明文本身。 综上所述,在RSA密码系统中,明文$0$、$1$和$n-1$均存在加密后的密文等于明文本身的情况。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值