Codeforces 612 E Square Root of Permutation

题目要求根据给定的第三行排列,推导出第二行排列。每行排列可以视为图中节点的环形连接。解决方法是:1) 奇数环在平方后步长加1,通过留空法补全;2) 偶数环平方后拆分成两半,按相对顺序恢复。实现过程中,使用两个指针恢复原序列,遇到相同长度偶数环时合并,巧妙地运用了Floyd判圈算法。特殊情况处理包含-1的情况,即未合并的环。
摘要由CSDN通过智能技术生成

http://codeforces.com/problemset/problem/612/E

题意:
1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
即 给出第三行让你求第二行

我们可以这样去考虑,即每一个排列都是对应着一个图,即把每个i和v[i]连接起来,那么这个图肯定是由若干个环组成的。现在我们把平方之后的环的图画出来,即容易发现这个规律:
1.奇数环还是不变,只是相当于每次的步长+1,重新构成了一个奇数环,我们只需要按留空法,把环补齐就ok了。
2.偶数环的话拆成了2半,那么我们只需要按照相对顺序恢复成偶数环就可以了!
刚开始就是没有想到要把排列变成图,然后再寻找一次图与二次图之间的规律和关系,最后只需要再把这幅图还原成序列就ok了嘛,很巧妙的转化!!!!!

具体在写的时候,开始没有想到用两个指针来回往后指去恢复原序列,导致走了弯路,这种方法的确 是妙,而且不需要刚开始的时候就把具体的环给存下来,只需要判断一下是奇数还是偶数,然后再跑一遍并且边跑边恢复就ok了
(根据数量上的对应关系)
在恢复偶数环的时候利用到了一种flyod判圈的方法,即遇到了相同长度的偶数环则合并,然后重置标志位,也是蛮巧妙的一种方法!!

最后就是判断-1的情况,这种情况根据样例推到一下就ok了࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值