Codeforces 612 E Square Root of Permutation

题目要求根据给定的第三行排列,推导出第二行排列。每行排列可以视为图中节点的环形连接。解决方法是:1) 奇数环在平方后步长加1,通过留空法补全;2) 偶数环平方后拆分成两半,按相对顺序恢复。实现过程中,使用两个指针恢复原序列,遇到相同长度偶数环时合并,巧妙地运用了Floyd判圈算法。特殊情况处理包含-1的情况,即未合并的环。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://codeforces.com/problemset/problem/612/E

题意:
1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
即 给出第三行让你求第二行

我们可以这样去考虑,即每一个排列都是对应着一个图,即把每个i和v[i]连接起来,那么这个图肯定是由若干个环组成的。现在我们把平方之后的环的图画出来,即容易发现这个规律:
1.奇数环还是不变,只是相当于每次的步长+1,重新构成了一个奇数环,我们只需要按留空法,把环补齐就ok了。
2.偶数环的话拆成了2半,那么我们只需要按照相对顺序恢复成偶数环就可以了!
刚开始就是没有想到要把排列变成图,然后再寻找一次图与二次图之间的规律和关系,最后只需要再把这幅图还原成序列就ok了嘛,很巧妙的转化!!!!!

具体在写的时候,开始没有想到用两个指针来回往后指去恢复原序列,导致走了弯路,这种方法的确 是妙,而且不需要刚开始的时候就把具体的环给存下来,只需要判断一下是奇数还是偶数,然后再跑一遍并且边跑边恢复就ok了
(根据数量上的对应关系)
在恢复偶数环的时候利用到了一种flyod判圈的方法,即遇到了相同长度的偶数环则合并,然后重置标志位,也是蛮巧妙的一种方法!!

最后就是判断-1的情况,这种情况根据样例推到一下就ok了,即有环没合并的时候!!!!

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;
int n,a[maxn],vis[maxn];
int cntodd,cnteven,sum;
int pre[maxn],ans[maxn];
vector<int>even,odd;
void combine_odd(int x,int cur){
    odd.clear();
    int y=x;
    int cnt=0;
    while(cnt<cur/2+1){
        y=a[y];cnt++;
    }
    cnt=0;
    while(cnt<cur/2){
        odd.push_back(x);odd.push_back(y);
        x=a[x];y=a[y];cnt++;
    }
    odd.push_back(x);
    for(int i=0;i<(int)odd.size();i++){
        ans[odd[i]]=odd[(i+1)%(int)odd.size()];
    }
}
void combine_even(int x,int cur){
    int cnt=0;int y=pre[cur];
    even.clear();
    while(cnt<cur){
        even.push_back(x);even.push_back(y);
        x=a[x];y=a[y];
        cnt++;
    }
    for(int i=0;i<even.size();i++){
        ans[even[i]]=even[(i+1)%(int)even.size()];
    }
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
    }
    //calculate the odd ring and the even ring
    for(int i=1;i<=n;i++){
        if(vis[i]) continue;
        int cur=i;sum=0;
        do{
            vis[cur]=1;
            sum++;cur=a[cur];
        }while(cur!=i);
        if(sum&1)  combine_odd(i,sum);
        else {
            if(pre[sum]==0) pre[sum]=i;
            else{
                combine_even(i,sum);
                pre[sum]=0;
            }
        }
    }
    for(int i=1;i<=n;i++){
        if(pre[i]!=0){
            return puts("-1");
        }
    }
    for(int i=1;i<=n;i++){
        printf("%d ",ans[i]);
    }
    printf("\n");
    return 0;
}
内容概要:本文详细介绍了基于时间卷积神经网络(TCN)的多分类预测方法,旨在提高时间序列数据分类的准确性。首先简述了TCN的基本原理及其相对于传统循环神经网络(如LSTM、GRU)的独特优势,特别是在并行计算和长期依赖处理方面。接着,文章展示了从Excel中读取数据的具体步骤,并进行了必要的数据预处理,如特征缩放和标签编码。随后,构建了一个基于Keras框架的TCN模型,详细解释了每一层的作用以及参数设置的理由。为了确保模型的有效性和泛化能力,文中还讨论了数据集的划分方式、训练技巧(如滑窗划分)、模型评估指标(如混淆矩阵)以及最终的模型部署方法。此外,作者分享了一些实用的经验和技巧,如避免梯度爆炸的方法、调整学习率策略等。 适合人群:对时间序列数据分析感兴趣的初学者和有一定经验的数据科学家,尤其是希望深入了解TCN模型及其应用的人群。 使用场景及目标:本方案适用于各种涉及时间序列分类的任务,如金融市场趋势预测、工业设备故障检测等。目标是在保证高准确度的同时,提供灵活易用的实现方式,使用户能够快速上手并在自己的项目中应用。 其他说明:文中提供的代码片段可以直接运行或稍作修改后应用于不同的数据集。对于想要进一步优化模型性能的研究者来说,文中提到的一些高级技巧(如滑窗划分、自定义损失函数等)也非常有价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值