强连通分量

26 篇文章 0 订阅

最近一段时间巩固一下图论

vector<int> adj[N];
int low[N],dfn[N],id[N],sta[N],idx,top,scnt;//scnt从1开始
bool insta[N];
void tarjan(int u)
{
    insta[u]=1; sta[top++]=u;
    low[u]=dfn[u]=++idx;
    for(int i=0;i<(int)adj[u].size();i++) {
        int v=adj[u][i];//用vector存的点
        if(!dfn[v]) {
            tarjan(v);
            low[u]=min(low[u],low[v]);//因为子节点v的low值已经被更新成祖先了,所以此处应该取min,如果是一条链的话,则子节点的low值比u大,证明了min的完备性
        }
        else if(insta[v]&&dfn[v]<low[u]) low[u]=dfn[v];//low值记录的是该点在它所在的强连通分量中树根
    }
    //多个连在一起的环构成的强连通分量,在一个深搜树种就已经都标记完了,因为for循环保证的
    //找到根
    if(low[u]==dfn[u]) {
        int tmp;
        ++scnt;
        do {
            tmp=sta[--top];
            //vis[tmp]=0;这里写错了。
            insta[tmp]=0;//应该是把在栈中的标记取消。
            id[tmp]=scnt;
        }while(tmp!=u);
    }
}

Tarjan算法的操作原理如下(此段完全摘自http://www.cnblogs.com/saltless/archive/2010/11/08/1871430.html

Tarjan算法基于定理:
1.在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说,强连通分量一定是有向图的某个深搜树子树。

2、可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。

3.这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。

4.强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。

5.如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。
http://blog.csdn.net/shiqi_614/article/details/7833628
这份博客是增加了无向图双连通,桥,割点的~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值