scipy.spatial.distance.cdist函数

语法:scipy.spatial.distance.cdist(XA, XB, metric=‘euclidean’, p=None, V=None, VI=None, w=None)

该函数计算两个输入集合中每一对之间的距离。

通过metric参数指定计算距离的不同方式得到不同的距离度量值。

metric不同取值对应的距离如下:

braycurtis----------Bray-Curtis 距离
canberra---------- 堪培拉距离
chebyshev----------切比雪夫距离
cityblock----------曼哈顿距离
correlation----------相关距离
cosine----------余弦距离
dice----------布尔向量之间的骰子距离
euclidean----------欧几里得距离(欧氏距离)
hamming----------归一化汉明距离
jaccard----------杰卡德相似系数
kulsinski----------布尔向量之间的 Kulsinski 距离
mahalanobis----------马氏距离
matching---------- 同汉明距离
minkowski----------闵可夫斯基距离(明氏距离)
rogerstanimoto----------布尔向量之间的 Rogers-Tanimoto 距离
russellrao----------布尔向量之间的 Russell-Rao 距离
seuclidean----------标准欧几里得距离
sokalmichener----------布尔向量之间的索卡尔-米切纳距离
sokalsneath----------矢量之间的 Sokal-Sneath 距离
sqeuclidean----------平方欧几里得距离
wminkowski----------向量之间的加权明氏距离
yule----------布尔向量之间的圣诞距离?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值