python sklearn笔记 异或 xor 监督式学习 svm svc

from numpy import *
from sklearn.svm import *
x = array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = array([0, 1, 1, 0])
svc = SVC()
svc.fit(x, y)
print svc.predict([[0, 0], [0, 1], [1, 0], [1, 1]])
print svc.predict([[0.1, 0.2], [0.3, 0.5], [0.6, 0.4], [0.7, 0.8]])


输出结果:

[0 1 1 0]
[0 1 1 0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值