题目描述
2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地。起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成了一个巨大的树状结构。如果基地A到基地B至少要经过d条道路的话,我们称基地A到基地B的距离为d。
由于火星上非常干燥,经常引发火灾,人类决定在火星上修建若干个消防局。消防局只能修建在基地里,每个消防局有能力扑灭与它距离不超过2的基地的火灾。
你的任务是计算至少要修建多少个消防局才能够确保火星上所有的基地在发生火灾时,消防队有能力及时扑灭火灾。
输入输出格式
输入格式:
输入文件名为input.txt。
输入文件的第一行为n (n<=1000),表示火星上基地的数目。接下来的n-1行每行有一个正整数,其中文件第i行的正整数为a[i],表示从编号为i的基地到编号为a[i]的基地之间有一条道路,为了更加简洁的描述树状结构的基地群,有a[i]
输出格式:
输出文件名为output.txt
输出文件仅有一个正整数,表示至少要设立多少个消防局才有能力及时扑灭任何基地发生的火灾。
输入输出样例
输入样例#1:
6
1
2
3
4
5
输出样例#1:
2
分析
若要使点全部被覆盖,那么那些深度最大的节点是一定被覆盖到的,这个就是我们入手点。先将有根树转成无根树,那么接下来我们考虑深度最大的点,一般的,对于深度最大的结点u,选择u的k级祖先是最划算的(意思是说这个题目的2改成了k我们都是可以做的,至于这个结论,正确性显然,有了这个结论后,我们就可以顺理成章地开始贪心啦!(从深度最大的开始贪心,这样防止漏解和错解),其余的基本操作详见代码。(特别提醒!如果节点深度<=k,那么就直接选择整个树的root,所以有个fa[1]=1)
代码
#include <bits/stdc++.h>
#define N 5005
struct NOTE
{
int id,dep;
}t[N];
struct EDGE
{
int to,next;
}e[N];
int n,ans=0;
int dep[N];
int head[N],cnt=0;
int father[N];
bool vis[N];
void add(int x,int y)
{
e[++cnt].to=y;e[cnt].next=head[x];head[x]=cnt;
e[++cnt].to=x;e[cnt].next=head[y];head[y]=cnt;
} // end void
void dfs(int v,int f)
{
for (int i = head[v]; i; i = e[i].next)
{
int now = e[i].to;
if (now!=f)
{
dep[now] = dep[v] + 1;
father[now] = v;
dfs(now,v);
} // end if
} // end for
} // end void
bool cmp(NOTE a,NOTE b)
{
return a.dep > b.dep;
}
void getDown(int x,int f,int k)
{
if (!k)
return ;
for (int i = head[x]; i; i = e[i].next)
{
int now = e[i].to;
if (now!=f)
{
vis[now] = true;
getDown(now,x,k-1);
} // end if
} // end for
}
int main()
{
scanf ("%d",&n);
for (int i = 2; i <= n; i++)
{
int x;
scanf ("%d",&x);
add(x,i);
} // end for
dep[1]=0;
dfs(1,0);
for (int i = 1; i <= n; i++)
{
t[i].id=i;
t[i].dep=dep[i];
} // end for
std::sort (t+1,t+n+1,cmp);
father[1]=1;
for (int i = 1; i <= n; i++)
{
int now = t[i].id;
if (!vis[now])
{
int g=father[father[now]];
vis[g] = true;
getDown(g,0,2);
ans++;
} // end if
} // end for
printf("%d\n",ans);
} // end main