《利用CTR算法预测电商广告投放效果点击率预测:Python实现完整案例》
电商平台中,广告投放是提高销量和用户参与度的重要手段。而为了最大化广告效益,精准的广告投放尤为关键。点击率(CTR)是衡量广告效果的核心指标,通过预测不同广告对用户的吸引力(即点击概率),可以帮助平台在有限的广告资源下做出最优投放决策。
电商广告投放场景,展示如何利用Python实现CTR预测。我们将包括数据处理、特征工程、模型训练及评估等步骤。我们的目标是构建一个预测广告点击率的模型,帮助电商平台优化广告展示,提高广告转化率。
1. 背景与数据说明
假设我们有一个电商广告数据集,其中包含了广告投放和用户交互的历史数据。数据集包含以下字段:
User ID:用户ID。
Ad ID:广告ID。
Device:设备类型(如手机、电脑等)。
Age:用户年龄。
Gender:用户性别。
Ad Category:广告分类(如电子产品、衣服、食品等)。
Clicked:广告是否被点击(目标变量,1表示点击,0表示未点击)。
2. 实现步骤
2.1 数据预处理
首先,我们需要导入必要的库并加载数据。数据预处理步骤包括处理缺失值、编码分类特征、拆分训练集和测试集等。
python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score, roc_auc_score
from sklearn.ensemble import RandomForestClassifier
# 加载数据
data = pd.read_csv('ecommerce_ads_data.csv')
# 查看数据的前几行
print(data.head())
# 处理缺失值(如果有)
data = data.dropna()
# 对类别特征进行Label Encoding
le = LabelEncoder()
data['Device'] = le.fit_transform(data['Device'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Ad Category'] = le.fit_transform(data['Ad Category'])
# 选择特征和目标变量
X = data[['User ID', 'Device', 'Age', 'Gender', 'Ad Category']]
y = data['Clicked']
# 切分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(f"训练集大小: {
X_train.shape}, 测试集大小: {
X_test.shape}")
2.2 特征工程
在实际的CTR预测中,除了原始的用户和广告特征,我们还可以根据业务逻辑进一步构造新的特征。例如,可以计算用户的年龄段(如18-24岁,25-34岁等)或者广告的展示次数。
python
# 将用户年龄分段
def age_group(age):
if age < 18:
return 'Under 18'
elif