Description
教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值。
教主最喜欢3种树,这3种树的高度分别为10,20,30。教主希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,教主想要你设计出一套方案,使得观赏价值之和最高。
Input
输入的第1行为一个正整数n,表示需要种的树的棵树。
接下来n行,每行3个不超过10000的正整数ai,bi,ci,按顺时针顺序表示了第i个位置种高度为10,20,30的树能获得的观赏价值。
第i个位置的树与第i+1个位置的树相邻,特别地,第1个位置的树与第n个位置的树相邻。
Output
输出仅包括一个正整数,为最大的观赏价值和。
Sample Input
4
1 3 2
3 1 2
3 1 2
3 1 2
Sample Output
11
Data Constraint
Hint
【样例说明】
第1~n个位置分别种上高度为20,10,30,10的树,价值最高。
【数据规模】
对于20%的数据,有n≤10;
对于40%的数据,有n≤100;
对于60%的数据,有n≤1000;
对于100%的数据,有4≤n≤100000,并保证n一定为偶数。
分析
比较明显的DP模型,只不过虽然是环状的,但是每个点的状态跟确定的区间长度无关,所以只需要枚举第1棵树的高度(特别注意当高度为20时要分下一棵树是10还是30),链状DP即可。
f[i][1..4]表示分别前i棵树,第i棵树的高度为10(下棵树肯定要比它高),20(下棵树比它高),20(下棵树比它矮),30(下棵树肯定要比它矮)的最大价值。转移也显而易见了。
代码
#include <algorithm>
#include <iostream>
#include <cstring>
#include <complex>
#include <cstdio>
#include <queue>
#include <cmath>
#include <map>
#include <set>
#define N 100010
#define INF 0x3f3f3f3f
#define sqr(x) ((x) * (x))
#define pi acos(-1)
int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9'){if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
int high[N][3];
int f[N][4];
void init()
{
f[1][0] = f[1][1] = f[1][2] = f[1][3] = -INF;
}
int n;
void dp()
{
for (int i = 2; i <= n; i++)
{
f[i][0] = std::max(f[i - 1][2], f[i - 1][3]) + high[i][0];
f[i][1] = f[i - 1][3] + high[i][1];
f[i][2] = f[i - 1][0] + high[i][1];
f[i][3] = std::max(f[i - 1][1], f[i - 1][0]) + high[i][2];
}
}
int ans;
void work()
{
init(); f[1][0] = high[1][0]; dp(); ans = std::max(ans, std::max(f[n][2], f[n][3]));
init(); f[1][1] = high[1][1]; dp(); ans = std::max(ans, f[n][3]);
init(); f[1][2] = high[1][1]; dp(); ans = std::max(ans, f[n][0]);
init(); f[1][3] = high[1][2]; dp(); ans = std::max(ans, std::max(f[n][0], f[n][1]));
}
int main()
{
n = read();
for (int i = 1; i <= n; i++)
high[i][0] = read(), high[i][1] = read(), high[i][2] = read();
work();
printf("%d\n",ans);
}