BZOJ 2819: Nim

Description

著名游戏设计师vfleaking,最近迷上了Nim。普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取。谁不能取谁输。这个游戏是有必胜策略的。于是vfleaking决定写一个玩Nim游戏的平台来坑玩家。
为了设计漂亮一点的初始局面,vfleaking用以下方式来找灵感:拿出很多石子,把它们聚成一堆一堆的,对每一堆编号1,2,3,4,…n,在堆与堆间连边,没有自环与重边,从任意堆到任意堆都只有唯一一条路径可到达。然后他不停地进行如下操作:

1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家。
2.把堆v中的石子数变为k。

由于vfleaking太懒了,他懒得自己动手了。请写个程序帮帮他吧。

Input

第一行一个数n,表示有多少堆石子。
接下来的一行,第i个数表示第i堆里有多少石子。
接下来n-1行,每行两个数v,u,代表v,u间有一条边直接相连。
接下来一个数q,代表操作的个数。
接下来q行,每行开始有一个字符:
如果是Q,那么后面有两个数v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略。
如果是C,那么后面有两个数v,k,代表把堆v中的石子数变为k。

对于100%的数据:
1≤N≤500000, 1≤Q≤500000, 0≤任何时候每堆石子的个数≤32767
其中有30%的数据:
石子堆组成了一条链,这3个点会导致你DFS时爆栈(也许你不用DFS?)。其它的数据DFS目测不会爆。

注意:石子数的范围是0到INT_MAX

Output

对于每个Q,输出一行Yes或No,代表对询问的回答。

Sample Input

【样例输入】

5

1 3 5 2 5

1 5

3 5

2 5

1 4

6

Q 1 2

Q 3 5

C 3 7

Q 1 2

Q 2 4

Q 5 3

Sample Output

Yes

No

Yes

Yes

Yes

分析

异或好啊,多异或两次就没了,所以我们可以打两个标记,就跟区间修改一样

代码

#include <bits/stdc++.h>

const int N = 500005;

int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
    while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
    return x * f;
}

struct Edge
{
    int to,next;
}e[N * 2];

int next[N];
int cnt;

void add(int x,int y)
{
    e[++cnt].to = y, e[cnt].next = next[x], next[x] = cnt;
    e[++cnt].to = x, e[cnt].next = next[y], next[y] = cnt;
}

int dep[N],fa[N];
int size[N];

void dfs1(int x)
{
    dep[x] = dep[fa[x]] + 1;
    size[x] = 1;
    for (int i = next[x]; i; i = e[i].next)
    {
        if (e[i].to == fa[x])
            continue;
        fa[e[i].to] = x;
        dfs1(e[i].to);
        size[x] += size[e[i].to];
    }
}

int mn[N],mx[N];
int sz;

int top[N];

void dfs2(int x,int chain)
{
    mn[x] = mx[x] = ++sz;
    top[x] = chain;
    int k = 0;
    for (int i = next[x]; i; i = e[i].next)
    {
        if (e[i].to != fa[x] && size[e[i].to] > size[k])
            k = e[i].to;
    }
    if (!k)
        return;
    dfs2(k, chain);
    for (int i = next[x]; i; i = e[i].next)
    {
        if (e[i].to == fa[x] || e[i].to == k)
            continue;
        dfs2(e[i].to,e[i].to);
    }
    mx[x] = sz;
}

int getLca(int x,int y)
{
    while (top[x] != top[y])
    {
        if (dep[top[x]] < dep[top[y]])
            std::swap(x,y);
        x = fa[top[x]];
    }
    if (dep[x] < dep[y])
        return x;
    else return y;
}

int n;
int s[N];

void ins(int x,int y)
{
    while (x <= n)
    {
        s[x] ^= y;
        x += x & (-x);
    }
}

int query(int x)
{
    int res = 0;
    while (x)
    {
        res ^= s[x];
        x -= x & (-x);
    }
    return res;
}

int a[N];

int main()
{
    n = read();
    for (int i = 1; i <= n; i++)
        a[i] = read();
    for (int i = 1; i < n; i++)
    {
        int x = read(), y = read();
        add(x,y);
    }
    dfs1(1);
    dfs2(1,1);
    for (int i = 1; i <= n; i++)
        ins(mn[i], a[i]), ins(mx[i] + 1, a[i]);
    int Q = read();
    while (Q--)
    {
        char ch[2];
        scanf("%s", ch + 1);
        if (ch[1] == 'Q')
        {
            int x = read(), y = read();
            int lca = getLca(x,y);
            if (query(mn[x]) ^ query(mn[y]) ^ a[lca])
                printf("Yes\n");
            else printf("No\n");
        }
        else
        {
            int x = read(), y = read();
            ins(mn[x], a[x]); ins(mx[x] + 1, a[x]);
            a[x] = y;
            ins(mn[x], a[x]); ins(mx[x] + 1, a[x]);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值