Description
著名游戏设计师vfleaking,最近迷上了Nim。普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取。谁不能取谁输。这个游戏是有必胜策略的。于是vfleaking决定写一个玩Nim游戏的平台来坑玩家。
为了设计漂亮一点的初始局面,vfleaking用以下方式来找灵感:拿出很多石子,把它们聚成一堆一堆的,对每一堆编号1,2,3,4,…n,在堆与堆间连边,没有自环与重边,从任意堆到任意堆都只有唯一一条路径可到达。然后他不停地进行如下操作:
1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家。
2.把堆v中的石子数变为k。
由于vfleaking太懒了,他懒得自己动手了。请写个程序帮帮他吧。
Input
第一行一个数n,表示有多少堆石子。
接下来的一行,第i个数表示第i堆里有多少石子。
接下来n-1行,每行两个数v,u,代表v,u间有一条边直接相连。
接下来一个数q,代表操作的个数。
接下来q行,每行开始有一个字符:
如果是Q,那么后面有两个数v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略。
如果是C,那么后面有两个数v,k,代表把堆v中的石子数变为k。
对于100%的数据:
1≤N≤500000, 1≤Q≤500000, 0≤任何时候每堆石子的个数≤32767
其中有30%的数据:
石子堆组成了一条链,这3个点会导致你DFS时爆栈(也许你不用DFS?)。其它的数据DFS目测不会爆。
注意:石子数的范围是0到INT_MAX
Output
对于每个Q,输出一行Yes或No,代表对询问的回答。
Sample Input
【样例输入】
5
1 3 5 2 5
1 5
3 5
2 5
1 4
6
Q 1 2
Q 3 5
C 3 7
Q 1 2
Q 2 4
Q 5 3
Sample Output
Yes
No
Yes
Yes
Yes
分析
异或好啊,多异或两次就没了,所以我们可以打两个标记,就跟区间修改一样
代码
#include <bits/stdc++.h>
const int N = 500005;
int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
struct Edge
{
int to,next;
}e[N * 2];
int next[N];
int cnt;
void add(int x,int y)
{
e[++cnt].to = y, e[cnt].next = next[x], next[x] = cnt;
e[++cnt].to = x, e[cnt].next = next[y], next[y] = cnt;
}
int dep[N],fa[N];
int size[N];
void dfs1(int x)
{
dep[x] = dep[fa[x]] + 1;
size[x] = 1;
for (int i = next[x]; i; i = e[i].next)
{
if (e[i].to == fa[x])
continue;
fa[e[i].to] = x;
dfs1(e[i].to);
size[x] += size[e[i].to];
}
}
int mn[N],mx[N];
int sz;
int top[N];
void dfs2(int x,int chain)
{
mn[x] = mx[x] = ++sz;
top[x] = chain;
int k = 0;
for (int i = next[x]; i; i = e[i].next)
{
if (e[i].to != fa[x] && size[e[i].to] > size[k])
k = e[i].to;
}
if (!k)
return;
dfs2(k, chain);
for (int i = next[x]; i; i = e[i].next)
{
if (e[i].to == fa[x] || e[i].to == k)
continue;
dfs2(e[i].to,e[i].to);
}
mx[x] = sz;
}
int getLca(int x,int y)
{
while (top[x] != top[y])
{
if (dep[top[x]] < dep[top[y]])
std::swap(x,y);
x = fa[top[x]];
}
if (dep[x] < dep[y])
return x;
else return y;
}
int n;
int s[N];
void ins(int x,int y)
{
while (x <= n)
{
s[x] ^= y;
x += x & (-x);
}
}
int query(int x)
{
int res = 0;
while (x)
{
res ^= s[x];
x -= x & (-x);
}
return res;
}
int a[N];
int main()
{
n = read();
for (int i = 1; i <= n; i++)
a[i] = read();
for (int i = 1; i < n; i++)
{
int x = read(), y = read();
add(x,y);
}
dfs1(1);
dfs2(1,1);
for (int i = 1; i <= n; i++)
ins(mn[i], a[i]), ins(mx[i] + 1, a[i]);
int Q = read();
while (Q--)
{
char ch[2];
scanf("%s", ch + 1);
if (ch[1] == 'Q')
{
int x = read(), y = read();
int lca = getLca(x,y);
if (query(mn[x]) ^ query(mn[y]) ^ a[lca])
printf("Yes\n");
else printf("No\n");
}
else
{
int x = read(), y = read();
ins(mn[x], a[x]); ins(mx[x] + 1, a[x]);
a[x] = y;
ins(mn[x], a[x]); ins(mx[x] + 1, a[x]);
}
}
}