题意
有n个正整数排成一排,其两两之间有一个运算符,运算符是’+’或’-‘。要求你可以任意添加括号,使得该算式的结果尽可能大。
n<=100000,1<=a[i]<=10^9
分析
有一个很重要的性质就是最多只会有两层括号。因为如果出现了第三层括号,则必然可以把第三层括号提到第一层且结果不变,且只有在’-‘后面添括号才是有效的。
那么我们可以设f[i,0/1/2]表示前i个数,结尾有0/1/2个括号时的最大值。
若运算符为’+’
若结尾没有括号,则直接在结尾添加+a[i]
若结尾有一个括号,可以把+a[i]放到括号里面,贡献为-a[i],转移到f[i,1]。也可以放到括号外面,同第一条转移。
若结尾有两个括号,则把+a[i]放到第二层括号里面,贡献为+a[i],转移到f[i,2]。
若运算符为’-’
若结尾没有括号,则直接在结尾添加-(a[i]),转移到f[i,1]。
若结尾有一个括号,则可以把-(a[i])放到括号里面,贡献为+a[i],转移到f[i,2]。也可以放到括号外面,同第一条转移。
若结尾有两个括号,则直接放到第一层括号下,贡献为+a[i],转移到f[i,2]。
代码
#include <bits/stdc++.h>
const int N = 100005;
const long long INF = (long long)1e15;
long long f[N][3];
char op[N][2];
int n,a[N];
int main()
{
scanf("%d",&n);
for (int i = 1; i < n; i++)
{
scanf("%d%s",&a[i],op[i]);
}
scanf("%d",&a[n]);
f[1][0] = a[1], f[1][1] = f[1][2] = -INF;
for (int i = 2; i <= n; i++)
{
if (op[i - 1][0] == '+')
{
f[i][0] = std::max(f[i - 1][0], f[i - 1][1]) + a[i];
f[i][1] = f[i - 1][1] - a[i];
f[i][2] = f[i - 1][2] + a[i];
}
if (op[i - 1][0] == '-')
{
f[i][0] = -INF;
f[i][1] = std::max(f[i - 1][0], f[i - 1][1]) - a[i];
f[i][2] = std::max(f[i - 1][1], f[i - 1][2]) + a[i];
}
}
printf("%lld\n",std::max(std::max(f[n][0], f[n][1]), f[n][2]));
}