【GDKOI2015】看门狗

题目

这里写图片描述

分析

把所有边按照u排序,设f[i][j]为左边前i个点右边前j个点都不能被连接了,那么
f[i][j] = max{ f[q][p] + vx[i] + vy[j] | q < i and p < j and (i, j) ∈ E }
明显上面一种DP方法是可以改的。
f[i][j] = max{ f[i-1][k] + vx[i] + vy[j] | k < j and (i, j) ∈ E, f[i-1][j], f[i][j-1], f[i-1][j-1]}
观察上面求最大值的部分,是一段连续的值,那么明显可以使用线段树或者树状数组快速求得。
把边的第二维作为第二关键字从大到小排序,那么就可以利用一个树状数组或者线段树,可以节省一点空间。

代码

#include <bits/stdc++.h>

const int N = 5e5 + 5;

int read()
{
    int x = 0, f = -1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
    while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar();}
    return x;
}

struct Note
{
    int x,y;
}q[N];

int v[N],s[N];
int n,m;

bool cmp(Note a,Note b)
{
    return a.x == b.x ? a.y > b.y : a.x < b.x; 
}

int t[N];
int f[N];

int query(int x)
{
    int ans = 0;
    while (x)
    {
        ans = std::max(ans, t[x]);
        x -= x & (-x);
    }
    return ans;
}

void add(int x,int val)
{
    while (x <= m)
    {
        t[x] = std::max(val, t[x]);
        x += x & (-x);
    }
}

int main()
{
    n = read(), m = read();
    for (int i = 1; i <= m; i++)
        q[i].x = read(), q[i].y = read();
    for (int i = 1; i <= n; i++)
        s[i] = read();
    for (int i = 1; i <= n; i++)
        v[i] = read();
    std::sort(q + 1, q + m + 1, cmp);
    for (int i = 1; i <= m; i++)
    {
        f[q[i].y] = std::max(f[q[i].y], query(std::max(q[i].y - 1,0)) + s[q[i].y] + v[q[i].x]);
        add(q[i].y,f[q[i].y]);
    }
    printf("%d\n",query(m));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值