题意
给出一个排列,要求按如下方式构造一个新排列,使得新排列的字典序尽量小。
每次可以在原排列中选择两个相邻的数,将这两个数在原排列中删掉并按照原来的相对顺序放在新排列的最前面。
n<=200000
分析
由于要字典序最小,我们可以倒着贪心。
首先找到下标奇偶性不同且字典序最小的两个数(a[x],a[y]),那么a[x]和a[y]就会作为新排列的开头,然后将序列拆分成三个区间[1,x),(x,y),(y,n]。
按照这个思路,我们可以用一个堆来维护每个区间的字典序,然后每次取字典序最小的区间出来,将该区间的两个元素输出后把其分成三个区间再扔进堆里面即可。
找最小值的话可以RMQ也可以线段树。
code
#include <bits/stdc++.h>
const int N = 200005;
const int INF = 1000000000;
int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
int n,a[N],rmq[2][N][20],bin[20],lg[N];
struct Data
{
int l,r,x,y;
bool operator < (const Data &p) const
{
return a[x] > a[p.x];
}
};
std::priority_queue<Data> Q;
void pre()
{
for (int i = 1; i <= n; i += 2)
rmq[1][i][0] = i;
for (int i = 2; i <= n; i += 2)
rmq[0][i][0] = i;
bin[0] = 1;
for (int i = 1; i <= 17; i++)
bin[i] = bin[i - 1] * 2;
for (int i = 1; i <= n; i++)
lg[i] = log(i) / log(2);
for (int j = 1; j <= lg[n]; j++)
for (int i = 1; i + bin[j] - 1 <= n; i++)
rmq[0][i][j] = a[rmq[0][i][j - 1]] < a[rmq[0][i + bin[j - 1]][j - 1]] ? rmq[0][i][j - 1] : rmq[0][i + bin[j - 1]][j - 1],
rmq[1][i][j] = a[rmq[1][i][j - 1]] < a[rmq[1][i + bin[j - 1]][j - 1]] ? rmq[1][i][j - 1] : rmq[1][i + bin[j - 1]][j - 1];
}
int getMn(int ty,int l,int r)
{
int w = lg[r - l + 1];
return a[rmq[ty][l][w]] < a[rmq[ty][r - bin[w] + 1][w]] ? rmq[ty][l][w] : rmq[ty][r - bin[w] + 1][w];
}
Data get(int l,int r)
{
int p = getMn(l & 1, l, r - 1), q = getMn((p & 1) ^ 1, p + 1, r);
return (Data){l,r,p,q};
}
int main()
{
n = read();
a[0] = INF;
for (int i = 1; i <= n; i++)
a[i] = read();
pre();
Q.push(get(1,n));
for (int i = 1; i <= n / 2; i++)
{
Data u = Q.top();
Q.pop();
int l = u.l, r = u.r, x = u.x, y = u.y;
printf("%d %d ",a[x],a[y]);
if (l < x - 1)
Q.push(get(l,x - 1));
if (x + 1 < y - 1)
Q.push(get(x + 1, y - 1));
if (y + 1 < r)
Q.push(get(y + 1, r));
}
}