一个简单的问题, 但是以前没有好好想一下.
比如现在有两组数[
x
1
,
x
2
,
x
3
x_1,x_2,x_3
x1,x2,x3]和[
y
1
,
y
2
y_1,y_2
y1,y2]
他们的平均数为
x
ˉ
=
x
1
+
x
2
+
x
3
3
\bar{x}=\frac{x_1+x_2+x_3}{3}
xˉ=3x1+x2+x3和
y
ˉ
=
y
1
+
y
2
2
\bar{y}=\frac{y_1+y_2}{2}
yˉ=2y1+y2
那么[
x
1
,
x
2
,
x
3
,
y
1
,
y
2
x_1,x_2,x_3,y_1,y_2
x1,x2,x3,y1,y2]的平均数是否等于
x
ˉ
+
y
ˉ
2
\frac{\bar{x}+\bar{y}}{2}
2xˉ+yˉ呢?
其实是不等于的. 因为可以展开式子发现等于 x 1 + x 2 + x 3 6 + y 1 + y 2 4 \frac{x_1+x_2+x_3}{6}+\frac{y_1+y_2}{4} 6x1+x2+x3+4y1+y2, 而本来是 x 1 + x 2 + x 3 5 + y 1 + y 2 5 \frac{x_1+x_2+x_3}{5}+\frac{y_1+y_2}{5} 5x1+x2+x3+5y1+y2. 但是如果x和y两组数的个数是一样的话, 这两者可以互换的.
今天突然碰到的问题, 记录在这里, 提醒自己.