关于两组数的平均数是否还可以再平均

一个简单的问题, 但是以前没有好好想一下.

比如现在有两组数[ x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3]和[ y 1 , y 2 y_1,y_2 y1,y2]
他们的平均数为 x ˉ = x 1 + x 2 + x 3 3 \bar{x}=\frac{x_1+x_2+x_3}{3} xˉ=3x1+x2+x3
y ˉ = y 1 + y 2 2 \bar{y}=\frac{y_1+y_2}{2} yˉ=2y1+y2
那么[ x 1 , x 2 , x 3 , y 1 , y 2 x_1,x_2,x_3,y_1,y_2 x1,x2,x3,y1,y2]的平均数是否等于 x ˉ + y ˉ 2 \frac{\bar{x}+\bar{y}}{2} 2xˉ+yˉ呢?

其实是不等于的. 因为可以展开式子发现等于 x 1 + x 2 + x 3 6 + y 1 + y 2 4 \frac{x_1+x_2+x_3}{6}+\frac{y_1+y_2}{4} 6x1+x2+x3+4y1+y2, 而本来是 x 1 + x 2 + x 3 5 + y 1 + y 2 5 \frac{x_1+x_2+x_3}{5}+\frac{y_1+y_2}{5} 5x1+x2+x3+5y1+y2. 但是如果x和y两组数的个数是一样的话, 这两者可以互换的.

今天突然碰到的问题, 记录在这里, 提醒自己.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值