粒子滤波(Particle Filter)的通俗解释

3653人阅读 评论(0) 收藏 举报
分类:

其实,粒子叫作估计器estimator。估计过去叫平滑smoothing,估计未来叫预测prediction,估计当前值才叫滤波filtering。粒子滤波算法源于蒙特卡洛思想,即以某事件出现的频率来指代该事件的概率。通俗的讲,粒子滤波也是能用已知的一些数据预测未来的数据。我们知道,科尔曼滤波限制噪声时服从高斯分布的,但是粒子滤波可以不局限于高斯噪声,原理上粒子滤波可以驾驭所有的非线性、非高斯系统。

一个比喻

某年月,警方(跟踪程序)要在某个城市的茫茫人海(采样空间)中跟踪寻找一个罪犯(目标),警方采用了粒子滤波的方法。

1. 初始化:

警方找来了一批警犬(粒子),并且让每个警犬预先都闻了罪犯留下来的衣服的味道(为每个粒子初始化状态向量S0),然后将警犬均匀布置到城市的各个区(均匀分布是初始化粒子的一种方法,另外还有诸如高斯分布,即:将警犬以罪犯留衣服的那个区为中心来扩展分布开来)。

2. 搜索:

每个警犬都闻一闻自己位置的人的味道(粒子状态向量Si),并且确定这个味道跟预先闻过的味道的相似度(计算特征向量的相似性),这个相似度的计算最简单的方法就是计算一个欧式距离(每个粒子i对应一个相似度Di),然后做归一化(即:保证所有粒子的相似度之和为1)。

3. 决策:

总部根据警犬们发来的味道相似度确定罪犯出现的位置(概率上最大的目标):最简单的决策方法为哪个味道的相似度最高,那个警犬处的人就是目标。

4. 重采样:

总部根据上一次的决策结果,重新布置下一轮警犬分布(重采样过程)。最简单的方法为:把相似度比较小的地区的警犬抽调到相似度高的地区。

上述,2,3,4过程重复进行,就完成了粒子滤波跟踪算法的全过程。


 粒子滤波的核心思想是随机采样+重要性重采样。既然不知道目标在哪里,那我就随机的放狗(随机采样)。放完狗后,根据特征相似度计算每个地区人和罪犯的相似度,然后在重要的地方再多放狗,不重要的地方就少放狗(重要性采样)。


参考:

http://www.cnblogs.com/konlil/archive/2012/02/05/2339142.html

查看评论

particle filtering---粒子滤波(讲的很通俗易懂)

在论文中看到粒子滤波的知识点,在网上找到的几篇讲的很易的文章: http://blog.csdn.net/heyijia0327/article/details/40899819 http...
  • piaoxuezhong
  • piaoxuezhong
  • 2017年11月23日 21:23
  • 3934

粒子滤波(Particle filter)算法简介及MATLAB实现

例子滤波是以贝叶斯推理和重要性采样为基本框架的。因此,想要掌握例子滤波,对于上述两个基本内容必须有一个初步的了解。...
  • qq_27923041
  • qq_27923041
  • 2017年02月20日 10:28
  • 9437

用俗话讲讲卡尔曼滤波与粒子滤波

一,卡尔曼滤波 卡尔曼滤波可以根据一些已知的量来预测未知的量,这些量受到的干扰必须得近似高斯噪声。这个东西可以用来干什么呢?例如我们可以用来预测明天,后天,未来好几天的温度。我们可以在前几天用温度计...
  • sac761
  • sac761
  • 2016年07月24日 21:34
  • 8030

粒子滤波方法入门

例子滤波方法入门:分析典型非线性系统数学模型      主要内容:      1、非线性数学模型      2、...
  • guoyunlei
  • guoyunlei
  • 2017年11月22日 10:07
  • 536

对 粒子滤波算法原理 的介绍,通俗易懂

转自:http://www.cnblogs.com/yangyangcv/archive/2010/05/23/1742263.html 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数...
  • sinat_31135199
  • sinat_31135199
  • 2017年02月16日 17:49
  • 2700

粒子滤波

之前一直在做移动机器人定位算法。查来查去,发觉粒子滤波算法(又叫MC算法)应该算是最流行的了。因此开始学习使用之。入手的是本英文书叫 “probalistic robotic” 很不错,我所见到的讲得...
  • AnonymousRookie
  • AnonymousRookie
  • 2015年06月18日 20:54
  • 1512

基于粒子滤波器的目标跟踪算法及实现

推荐大家看论文《An adaptive color-based particle filter》 接下来,我偷懒了
  • jinshengtao
  • jinshengtao
  • 2014年06月15日 10:15
  • 36853

粒子滤波

粒子滤波(PF:Particle Filter)&与卡尔曼滤波(Kalman Filter)相比较   粒子滤波(PF: Particle Filter)的思想基于蒙特卡洛方法(Monte ...
  • yang090510118
  • yang090510118
  • 2014年10月17日 11:06
  • 3302

从卡尔曼滤波到粒子滤波 很详细,很明了。。

转自http://blog.csdn.net/karen99/article/details/7771743 卡尔曼滤波本来是控制系统课上学的,当时就没学明白,也蒙混过关了,以为以后也不用再见到...
  • zkl99999
  • zkl99999
  • 2015年06月24日 11:19
  • 12658

粒子滤波概述

粒子滤波(PF: Particle Filter)的思想基于蒙特卡洛方法(Monte Carlo methods),它是利用粒子集来表示概率,可以用在任何形式的状态空间模型上。其核心思想是通过从后验概...
  • feiskyer
  • feiskyer
  • 2012年09月29日 09:51
  • 1205
    新家地址
    个人资料
    持之以恒
    等级:
    访问量: 7万+
    积分: 1834
    排名: 2万+
    最新评论