用弗雷歇距离(Fréchet Distance)进行音质和视质度量

本文介绍了弗雷歇距离(Fréchet Distance)在音视频质量度量中的应用,包括Fréchet音频距离(FAD)和Fréchet视频距离(FVD)。这些指标通过大规模实验验证与人类感知的高度相关性,为音频和视频生成模型的评估提供有力工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用弗雷歇距离(Fréchet Distance)进行音质和视质度量

当你能够衡量自己所说的东西,并用数字来说明它,这意味着你对它有较好的了解;反之,则意味你对它并不是真正了解。

————William Thomson在1883年的“电子计量单位”讲座中说

机器学习的科学进步速度通常取决于优质数据集和指标的可用性。 在深度学习中,基准数据集(例如ImageNet或Penn Treebank)可促进建立用于图像识别和语言模型的深度人工神经网络。 然而,尽管可用的真值数据集很适合作为这些预测任务表现的衡量指标,但标定这些用于和生成模型进行比较的数据并不是那么简单。 想象一下一种模型,该模型生成星际争霸系列游戏的视频——如何确定哪种模型最好? 显然,下面显示的某些视频看起来比其他视频更真实,但是它们之间的差异可以用什么指标量化吗? 获得用于评估生成模型的有力指标对于衡量(取得)音频和视频理解领域的进展至关重要,但是目前尚不存在此类指标。

由星际争霸录像数据集中的一组镜头训练出的不同模型上生成的视频

在“Fréchet Audio Distance: A Metric for Evaluating Music Enhancement Algorithms”和“Towards Accurate Generative Models of Video: A New Metric & Challenges”中,我们介绍了两个这样的衡量指标——Fréchet音频距离(FAD)和Fréchet视频距离(FVD) 。我们用10000个视频和69000个音频片段成对比较

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值