Deep Learning
文章平均质量分 70
蹦跶的小羊羔
我养的猫长大了茶树也结了茶
展开
-
ResNet网络简单理解与代码
ResNet网络提出的文章是《Deep Residual Learning for Image Recognition》下载地址:https://arxiv.org/pdf/1512.03385.pdf代码地址:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py一、深层次网络训练瓶颈:梯度消失,网络退化 深度卷积网络自然的整合了低中高不同层次的特征,特征的层次可以靠加深网络的层次...原创 2020-05-18 11:41:17 · 783 阅读 · 0 评论 -
A Hierarchical Reinforced Sequence Operation Method for Unsupervised Text Style Transfer
无监督文本样式转换的分层增强序列运算方法下载链接:https://arxiv.org/pdf/1906.01833.pdf一、A Paper List for Style Transfer in TextDatasetDear Sir or Madam, May I introduce the YAFC Corpus: Corpus, Benchmarks and Metrics for Formality Style Transfer, NAACL-HLT 2018,[paper]...原创 2020-05-14 10:52:44 · 260 阅读 · 0 评论 -
用自己数据集训练Mask_RCNN代码
之前的下载链接可能是失效了。train_shape.ipynbimport osimport sysimport randomimport mathimport reimport timeimport numpy as npimport cv2import matplotlibimport matplotlib.pyplot as pltfrom PIL impor...原创 2020-03-30 19:25:00 · 894 阅读 · 3 评论 -
卷积神经网络中的全连接层
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT(输入层)-CONV(卷积层)-RELU(激活函数)-POOL(池化层)-FC(全连接层) 在上一篇博客中(https://blog.csdn.net/yql_617540298/article/details/104542823),已经将卷积神经网络中的卷积层、池化层知识点进行了...原创 2020-02-28 12:03:39 · 1973 阅读 · 0 评论 -
卷积神经网络及其特征图可视化
参考链接:https://www.jianshu.com/p/362b637e2242参考链接:https://blog.csdn.net/dcrmg/article/details/81255498/参考链接:https://zhuanlan.zhihu.com/p/59917842参考链接:https://www.jb51.net/article/171016.htm一、卷积与...原创 2020-02-27 22:16:39 · 1893 阅读 · 0 评论 -
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation引用:Ronneberger O , Fischer P , Brox T . U-Net: Convolutional Networks for Biomedical Image Segmentation[J]. 2015.U-Net:用于生物医学图像分割的卷...原创 2020-02-27 16:44:51 · 1396 阅读 · 0 评论 -
风格迁移与Gram matrix
参考链接:https://blog.csdn.net/hellocsz/article/details/91486679参考链接:https://blog.csdn.net/appleyuchi/article/details/78170424参考链接:https://www.cnblogs.com/dudu1992/p/9112054.html参考链接:https://www.cnb...原创 2020-02-21 13:57:24 · 677 阅读 · 0 评论 -
图像质量评价(Image Quality Assessment,IQA)
图像质量 图像质量的含义主要包含两个方面,一个是图像的逼真度(fidelity),另一个是图像的可懂度(intelligibility)。(1)图像的逼真度(fidelity) 描述被评价图像与标准图像的偏离程度,图像质量直接取决于成像装备的光学性能、图像对比度、仪器噪声等多种因素的影响,通过质量评价可以对影像的获取、处理等各环节提供监控手段。(2)图...原创 2020-02-15 20:47:38 · 9297 阅读 · 0 评论 -
《基于CapsNet的汉字字形表征模型》文章理解
基于CapsNet 的汉字字形表征模型文章来源于文章引用格式谢海闻,叶东毅,陈昭炯.基于CapsNet的汉字字形表征模型[J].模式识别与人工智能,2019,32(02):169-176.原文下载地址:https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2019&file...原创 2020-02-15 12:08:08 · 469 阅读 · 0 评论 -
CNN网络架构演进
卷积神经网络(Convolutional Neural Network, CNN)从90年代LeNet开始,21世纪沉寂了10年,直到12年AlexNet开始又开始火热起来。一、LeNet LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务。自那时起,CNN的最基本的架构就定下来了:卷积层、池化层、全连接层。如今各大深度学...原创 2019-01-07 10:14:50 · 1132 阅读 · 0 评论 -
python计算两张图像的L1和L2损失
理解损失函数中正则化项L1和L2的理解:https://blog.csdn.net/fjssharpsword/article/details/78842374过拟合的解释:https://hit-scir.gitbooks.io/neural-networks-and-deep-learning-zh_cn/content/chap3/c3s5ss2.html正则化的解释:h...原创 2019-02-24 16:46:26 · 4810 阅读 · 2 评论 -
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
(基于感知损失函数的实时风格转换和超分辨率重建)一、概述1. 图像转换问题:将一个输入图像变换成一个输出图像。(1)流行的处理方法:图像转换的方法通常是训练前馈卷积神经网络,将输出图像与原本图像的逐像素差距作为损失函数。(2)并行工作表示,高质量的图像可以通过用预训练好的网络提取高级特征、定义并优化感知损失函数来产生。(3)结合以上两种方式的优点:本文提出采用感知损失函数训...原创 2019-02-25 19:22:39 · 2267 阅读 · 3 评论 -
Perceptual Losses for Real-Time Style Transfer and Super-Resolution 运行程序
(https://github.com/yusuketomoto/chainer-fast-neuralstyle)1. 环境配置sudo pip install chainersh setup_model.sh2. Trainpython train.py -s <style_image_path> -d <training_dataset_path>...原创 2019-02-25 19:24:39 · 218 阅读 · 0 评论 -
卷积神经网络中的权值共享
一、起源权值共享这个词最开始其实是由LeNet5模型提出来,在1998年,LeCun发布了LeNet网络架构其实权值共享这个词说全了就是整张图片在使用同一个卷积核内的参数,比如一个3*3*1的卷积核,这个卷积核内9个的参数被整张图共享,而不会因为图像内位置的不同而改变卷积核内的权系数。说的再直白一些,就是用一个卷积核不改变其内权系数的情况下卷积处理整张图片(当然CNN中每一层不会只有一...原创 2019-03-04 09:16:30 · 3897 阅读 · 1 评论 -
自然场景下文本检测主要数据集
一、数据集二、主要方法对比参考文献:《自然场景图像中的文本检测综述》原创 2019-03-14 15:14:58 · 3382 阅读 · 1 评论 -
NMS(Non-maximum suppression)非极大抑制
一、NMS作用NMS的作用:去掉detection任务重复的检测框。简单的说,就是不是局部最大值的检测框都去掉。可以被理解是局部最大搜索,这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小(《Efficient Non-Maximum Suppression》)参考:https://www.cnblogs.com/makefile/p/nms.html...原创 2019-04-23 16:27:26 · 1126 阅读 · 0 评论 -
DenseNet手写汉字识别
一、数据集HWDBhttps://blog.csdn.net/yql_617540298/article/details/82740382博客介绍了如何转换。https://pan.baidu.com/s/1o84jIrg#list/path=%2F百度云中可以直接下载转换后的结果。二、源码import tensorflow as tfimport osimport rand...原创 2019-01-07 09:49:33 · 2926 阅读 · 1 评论 -
CNN手写汉字识别
一、数据集HWDB由于HWDB数据集解压之后是gnt格式的,需要将其转换为png格式。https://blog.csdn.net/yql_617540298/article/details/82740382博客介绍了如何转换。https://pan.baidu.com/s/1o84jIrg#list/path=%2F百度云中可以直接下载转换后的结果。二、源码参考github:h...原创 2019-01-01 17:16:41 · 4217 阅读 · 1 评论 -
Mask-RCNN训练train_shapes.ipynb
Mask-RCNN在目标检测中是一种非常好的技术,能够达到非常精准的效果。本文仅仅是学习笔记,用于交流。 Mask-RCNN在train_shapes.ipynb展示了怎么训练自己的数据集,这个教程包括了一个玩具数据集来演示训练一个新数据集。但是需要在服务器上启动ipython,但是若服务器的图形界面没有启用,则需要在服务器上打开服务,然后在本机上运行jupyter-noteb...原创 2018-07-07 14:41:43 · 2791 阅读 · 25 评论 -
hed-caffe(旧版本caffe)实现过程中的坑
本文仅仅是本人在跑实验的时候记录的学习笔记,方便交流。在hed原版代码中,使用的是旧版本的caffe,所以我们需要先编译caffe。实验步骤:一、编译caffe cd进入到hed-master文件夹目录下(1)cp Makefile.config.example Makefile.config(2)make all但这时出现了error全部错误粘贴到这...原创 2018-07-05 10:20:33 · 1382 阅读 · 5 评论 -
MSRA-TD500数据集(MSRA Text Detection 500 Database)
RRPN(《Arbitrary-Oriented Scene Text Detection via Rotation Proposals》)是文本检测中比较具有代表性的文章,文章地址:https://arxiv.org/pdf/1703.01086.pdf。 文章里面用到了MSRA-TD500数据集,数据集特点:多方向文本检测、大部分文本都在引导牌上、分辨率在1296...原创 2018-08-04 16:08:22 · 10428 阅读 · 0 评论 -
Mask-RCNN校验结果计算mAP值
Mask-RCNN校验结果可以通过计算mAP值得到一个数值的衡量,在10张图片上计算平均值,增加更高的准确性。一、mAP值的计算P:precision,即准确率;R:recall,即 召回率。PR曲线:即以precision和recall作为纵、横轴坐标的二维曲线。AP值:Average Precision,即平均精确度。mAP值:Mean Average ...原创 2018-08-17 17:35:14 · 17423 阅读 · 68 评论 -
用Mask-RCNN训练自定义大小的数据集
Mask-RCNN自动获取训练集中图像的长度和宽度,然后用于训练。一、目前情况用Mask-RCNN训练自己的数据集时,需要制定图片的长度和宽度,即IMAGE_MIN_DIM = 448IMAGE_MAX_DIM = 640而在Mask_RCNN/mrcnn目录下model.py文件中第1815行到1819行代码h, w = config.IMAGE_SH...原创 2018-08-17 20:07:56 · 7895 阅读 · 21 评论 -
keras+卷积神经网络HWDB手写汉字识别
写在前面HWDB手写汉字数据集来自于中科院自动化研究所,下载地址:http://www.nlpr.ia.ac.cn/databases/download/feature_data/HWDB1.1trn_gnt.ziphttp://www.nlpr.ia.ac.cn/databases/download/feature_data/HWDB1.1tst_gnt.zip源码在gith...原创 2018-08-31 10:34:19 · 9404 阅读 · 10 评论 -
生成式对抗网络GAN生成手写数字
GAN(Generative Adversarial Networks)是较为火热的一种神经网络,具有较多的优势和特点。一、GAN1. 原理源自于零和博弈(zero-sum game),包括生成模型(generative model, G)和判别模型(discriminative model, D)。G,D的主要功能是:(1)G是一个生成式的网络,它接收一个随机的噪声z(随机数...原创 2018-08-21 19:50:03 · 1242 阅读 · 0 评论 -
深度学习:多场景多尺度的文本检测
《Fused Text Segmentation Networks for Multi-oriented Scene Text Detection》用于多场景文本检测的融合文本分割网络。(2018.5.7)文章笔记摘要 - 本文从实例感知语义分割的角度介绍了一种新的面向多向场景文本检测的端到端框架。 我们提出了融合文本分割网络,它在特征提取过程中结合了多级特征,因为与一般对象相比,文本...原创 2018-09-02 19:41:28 · 4218 阅读 · 2 评论 -
深度学习:文本检测数据集整理
ICDAR2011 paper:ICDAR 2011 Robust Reading Competition Challenge 2 Reading Text in Scene Images ICDAR2011官网下载(需要注册),task介绍 ICDAR2003 paper:ICDAR 2003 Robust Reading Competitions 数据库下载 IC...原创 2018-09-03 10:58:37 · 3544 阅读 · 2 评论 -
TextSnake文本检测
论文《TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes》(1) 数据集文章中提到了4个数据集:1) Total-Text;(新开源曲线文本数据集)2) SCUT-CTW1500; (新开源曲线文本数据集)3) ICDAR 2015;(经典数据集)4) MSRA-TD50...原创 2018-09-06 08:50:28 · 2220 阅读 · 1 评论 -
Ubuntu16.4配置caffe详细流程
ubuntu配置caffe总体流程大体分为以下几步骤:(1)安装依赖包 (2)禁用 nouveau (3)配置环境变量 (4)下载 CUDA 8.0 (5)安装 CUDA 8.0 (6)验证 CUDA 8.0 是否安装成功 (7)安装 cudnn (8)安装 opencv3.1 (9)安装 caffe (10)安装 pycaffe notebook 接口环境但是,本博文针...原创 2018-09-15 23:24:54 · 672 阅读 · 0 评论 -
HWDB数据集gnt格式转为png格式
HWDB数据集下载地址:http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html一、数据集HWDB数据集是解压之后,是gnt格式的,不能可视化,如果需要显示的看到HWDB数据集,那么需要将gnt格式转换为png图片格式。二、源码import osimport numpy as npimport struct...原创 2018-09-17 15:05:04 · 7409 阅读 · 35 评论 -
数据集.npy格式与png格式互换
深度学习中,有时我们需要对数据集进行预处理,这样能够更好的读取数据。一、png格式生成.npy格式import numpy as npimport osfrom PIL import Imagedir="C:/Users/Administrator/Desktop/trainA"def getFileArr(dir): result_arr=[] ...原创 2018-09-17 19:42:42 · 16104 阅读 · 12 评论 -
目标检测性能评价指标mAP、Precision、Recall、IoU
一、mAP1. TP,FP,FN,TN(1)TP(True positives):正确划分正例个数;正->正;(2)FP(False positives):错误划分正例个数;负->正;(3)FN(False negatives):错误划分负例个数;正->负;(4)TN(True negatives):正确划分负例个数;负->负;2. Precison...原创 2018-10-11 21:19:50 · 3724 阅读 · 0 评论 -
语义分割和实例分割概念
有些概念容易混淆,整理一下,备注记忆。一、概念区分1. 图像分类(image classification)识别图像中存在的内容;2. 物体识别和检测(object recognition and detection)识别图像中存在的内容和位置(通过边界框);3.语义分割(semantic segmentation)识别图像中存在的内容以及位置(通过查找属于它的所有像素...原创 2018-10-18 11:05:04 · 13803 阅读 · 2 评论 -
EAST: An Efficient and Accurate Scene Text Detector
EAST: An Efficient and Accurate Scene Text DetectorEAST:高效准确的场景文本检测器【Abstract】先前的场景文本检测方法已经在各种基准测试中取得了很好的成果。然而,在处理具有挑战性的情况时,即使配备了深度神经网络模型,它们通常也会达不到,因为整体性能取决于管道中多个阶段和组件的相互作用。在这项工作中,我们提出了一个简单而强大的管...原创 2018-11-04 15:53:13 · 738 阅读 · 0 评论 -
用自己的数据集训练Mask-RCNN实现过程中的坑
本文仅仅是自己实现过程的笔记记录,仅仅用来交流的。在网上大量搜集资料后,实现Mask-RCNN,但是过程中还是出现了很多很多的问题,所以将过程记录如下,方便日后学习。一、实验前准备1. COCO数据集COCO的 全称是Common Objects in COntext,是微软团队提供的一个可以用来进行图像识别的数据集。MS COCO数据集中的图像分为训练、验证和测试集。COCO...原创 2018-07-17 12:06:25 · 8344 阅读 · 9 评论